Skip to main content

A Comprehensive Survey on Passive Video Forgery Detection Techniques

  • Chapter
  • First Online:
Recent Studies on Computational Intelligence

Part of the book series: Studies in Computational Intelligence ((SCI,volume 921))

Abstract

In the ongoing year, video falsification identification is a significant issue in video criminology. Unapproved changes in video outline causing debasement of genuineness and uprightness of inventiveness. With the progression in innovation, video preparing apparatuses and procedures are accessible for modifying the recordings for falsification. The adjustment or changes in current video is imperative to identify, since this video can be utilized in the validation procedure. Video authentication thus required to be checked. There are various ways by which video can be tempered, for example, frame insertion, deletion, duplication, copy and move, splicing and so on. This article presents forgery detection techniques like inter-frame forgery, intra-frame forgery & compression-based forgery detection that can be used for video tampering detection. Thorough analysis of newly developed techniques, passive video forgery detection is helpful for finding the problems and getting out new opportunities in the area of passive video forgery detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. R. Saranya, S. Saranya, & R. Cristin. (2017). Exposing Video Forgery Detection Using Intrinsic Fingerprint Traces 1 1, 2, 3 IEEE Access, 73–76.

    Google Scholar 

  2. Kelly, F. (2006). Fast probabilistic inference and GPU video processing [thesis], Trinity College (Dublin, Ireland). Department of Electronic & Electrical Engineering, p. 178.

    Google Scholar 

  3. Li J, He H, Man H, Desai S (2009) A general-purpose FPGA-based reconfigurable platform for video and image processing. In W. Yu, H. He, & N. Zhang (Eds.), Advances in neural networks—ISNN 2009. ISNN 2009. Lecture notes in computer science (Vol. 5553, Berlin: Springer).

    Google Scholar 

  4. H. T. Sen car, & N. Memon (2008). Overview of state-of-the-art in digital image forensics. Statistical Science and Interdisciplinary Research, 325–347.

    Google Scholar 

  5. Asok, D., Himanshu, C., & Sparsh, G. (2006). Detection of forgery in digital video. In 10th World Multi Conference on Systemics, Cybernetics and Informatics, pp. 16–19, Orlando. USA.

    Google Scholar 

  6. Su, L., Huang, T., & Yang, J. (2014). A video forgery detection algorithm based on compressive sensing. Springer Science and Business Media New York.

    Google Scholar 

  7. Shanableh, T. (2013). Detection of frame deletion for digital video forensics. Digital Investigation, 10(4), 350–360.

    Google Scholar 

  8. Hsu, C. C., Hung, T. Y., Lin, C. W., & Hsu, C. T. (2008). Video forgery detection using correlation of noise residue. In 2008 IEEE 10th workshop on multimedia signal processing, pp. 170–174.

    Google Scholar 

  9. Ghosh, S., Rana, A., & Kansal, V. (2019). Evaluating the impact of sampling-based nonlinear manifold detection model on software defect prediction problem. In S. Satapathy, V. Bhateja, J. Mohanty, & S. Udgata (Eds.), Smart intelligent computing and applications. Smart innovation, systems and technologies (Vol. 159), pp. 141–152.

    Google Scholar 

  10. Ghosh, S., Rana, A., & Kansal, V. (2017). Predicting defect of software system. In Proceedings of the 5th International Conference on Frontiers in Intelligent Computing: Theory and Applications (FICTA-2016), Advances in Intelligent Systems and Computing (AISC), pp. 55–67, 2017.

    Google Scholar 

  11. Kurosawa, K., Kuroki, K., & Saitoh, N. (1999). CCD fingerprint method identification of a video camera from videotaped images. In Proceedings of IEEE International Conference on Image Processing, Kobe, Japan, pp. 537–540.

    Google Scholar 

  12. Lukáš, J., Fridrich, J., & Goljan, M. (2006). Digital camera identification from sensor pattern noise. IEEE Transactions on Information Forensics and Security, 1(2), 205–214.

    Article  Google Scholar 

  13. Goljan, M., Chen, M., Comesaña, P., & Fridrich, J. (2016). Effect of compression on sensor-fingerprint based camera identification. Electronic Imaging, 1–10.

    Google Scholar 

  14. Mondaini, N., Caldelli, R., Piva, A., Barni, M., & Cappellini, V. (2007). Detection of malevolent changes in digital video for forensic applications. In E. J. Delp, & P. W. Wong (Eds.), Proceedings of SPIE Conference on Security, Steganography and Watermarking of Multimedia Contents (Vol. 6505, No. 1).

    Google Scholar 

  15. Wang, W., & Farid, H. (2007). Exposing digital forgeries in interlaced and deinterlaced video. IEEE Transactions on Information Forensics and Security, 2(3), 438–449.

    Article  Google Scholar 

  16. Wang, W., & Farid, H. (2006). Exposing digital forgeries in video by detecting double MPEG compression. In: S. Voloshynovskiy, J. Dittmann, & J. J. Fridrich (Eds.), Proceedings of 8th Workshop on Multimedia and Security (MM&Sec’06) (pp. 37–47). ACM Press, New York.

    Google Scholar 

  17. Hsia, S. C., Hsu, W. C., & Tsai, C. L. (2015). High-efficiency TV video noise reduction through adaptive spatial–temporal frame filtering. Journal of Real-Time Image Processing, 10(3), 561–572.

    Article  Google Scholar 

  18. Sitara, K., & Mehtre, B. M. (2018). Detection of inter-frame forgeries in digital videos. Forensic Science International, 289, 186–206.

    Article  Google Scholar 

  19. Zhao, D. N., Wang, R. K., & Lu, Z. M. (2018). Inter-frame passive-blind forgery detection for video shot based on similarity analysis. Multimedia Tools and Applications, 77(19), 25389–25408.

    Article  Google Scholar 

  20. Kingra, S., Aggarwal, N., & Singh, R. D. (2017). Inter-frame forgery detection in H.264 videos using motion and brightness gradients. Multimedia Tools and Applications, 76(24), 25767–25786.

    Google Scholar 

  21. Kingra, S., Aggarwal, N., & Singh, R. D. (2017). Video inter-frame forgery detection approach for surveillance and mobile recorded videos. International Journal of Electrical & Computer Engineering, 7(2), 831–841.

    Google Scholar 

  22. Ulutas, G., & Muzaffer, G. (2016). A new copy move forgery detection method resistant to object removal with uniform background forgery. Mathematical Problems in Engineering, 2016.

    Google Scholar 

  23. Abbasi Aghamaleki, J., Behrad, A. (2016). Inter-frame video forgery detection and localization using intrinsic effects of double compression on quantization errors of video coding. Signal Processing: Image Communication, 47, 289–302.

    Google Scholar 

  24. Singh, R. D., & Aggarwal, N. (2016). Detection of re-compression, transcoding and frame-deletion for digital video authentication. In 2015 2nd International Conference on Recent Advances in Engineering & Computational Sciences RAECS.

    Google Scholar 

  25. Bagiwa, M. A., Wahab, A. W. A., Idris, M. Y. I., Khan, S., & Choo, K. K. R. (2016). Chroma key background detection for digital video using statistical correlation of blurring artifact. Digital Investigation, 19, 29–43.

    Article  Google Scholar 

  26. Baradel, F., Neverova, N., Wolf, C., Mille, J., & Mori, G. (2018). Object level visual reasoning in videos. In Lecture Notes in Computer Science (including Subseries Lecture Notes Artificial Intelligence, Lecture Notes Bioinformatics) (Vol. 11217, pp. 106–122). LNCS.

    Google Scholar 

  27. Afchar, D., Nozick, V., Yamagishi, J., & Echizen, I. (2018). MesoNet: A compact facial video forgery detection network. In 2018 IEEE International Workshop on Information Forensics and Security (WIFS).

    Google Scholar 

  28. Jia, S., Xu, Z., Wang, H., Feng, C., & Wang, T. (2018). Coarse-to-fine copy-move forgery detection for video forensics. IEEE Access, 6(c), 25323–25335.

    Google Scholar 

  29. Kaur Saini, G., & Mahajan, M. (2016). Improvement in copy—Move forgery detection using hybrid approach. International Journal of Modern Education and Computer Science, 8(12), 56–63.

    Google Scholar 

  30. Kaur, G., & Kaur, R. (2016). A video forgery detection using discrete wavelet transform and scale invarient feature transform techniques. 5(11), 1618–1623.

    Google Scholar 

  31. Chen, K., Wang, J., Yang, S., Zhang, X., Xiong, Y., Loy, C. C., & Lin, D. (2018). Optimizing video object detection via a scale-time lattice. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 7814–7823).

    Google Scholar 

  32. He, P., Jiang, X., Sun, T., Wang, S., Li, B., & Dong, Y. (2017). Frame-wise detection of relocated Iframes in double compressed H.264 videos based on convolutional neural network. Journal of Visual Communication and Image Representation, 48, 149–158.

    Google Scholar 

  33. Yao, H., Song, S., Qin, C., Tang, Z., & Liu, X. (2017). Detection of double-compressed H.264/AVC video incorporating the features of the string of data bits and skip macroblocks. Symmetry (Basel), 9(12), 1–17.

    Google Scholar 

  34. Rocha, A., Scheirer, W., Boult, T., & Goldenstein, S. (2011). Vision of the unseen: Current trends and challenges in digital image and video forensics. ACM Computing Surveys, 43(4), 26.

    Article  Google Scholar 

  35. Milani, S., Fontani, M., Bestagini, P., Barni, M., Piva, A., Tagliasacchi, M., & Tubaro, S. (2012). An overview on video forensics. APSIPA Transactions on Signal and Information Processing, 1(1), 1–18.

    Google Scholar 

  36. Wahab, A. W. A., Bagiwa, M. A., Idris, M. Y .I., Khan, S., Razak, Z., & Ariffin, M. R. K. Passive video forgery detection techniques: a survey. In Proceedings of 10th International Conference on Information Assurance and Security, Okinawa, Japan, pp. 29–34.

    Google Scholar 

  37. Joshi, V., & Jain, S. (2015). Tampering detection in digital video e a review of temporal fingerprints based techniques. In Proceedings of 2nd International Conference on Computing for Sustainable Global Development, New Delhi, India, pp. 1121–1124.

    Google Scholar 

  38. Bestagini, P., Milani, S., Tagliasacchi, M., & Tubaro, S. (2013). Local tampering detection in video sequences. In Proceedings of 15th IEEE International Workshop on Multimedia Signal Processing. Pula, pp. 488–493.

    Google Scholar 

  39. Zhang, J., Su, Y., Zhang, M. (2009). Exposing digital video forgery by ghost shadow artifact. In Proceedings of 1st ACM Workshop on Multimedia in Forensics (MiFor’09) (pp. 49–54). NewYork: ACM Press.

    Google Scholar 

  40. Bidokhti, A., Ghaemmaghami, S.: Detection of regional copy/move forgery in MPEG videos using optical flow. In: International symposium on Artificial intelligence and signal processing (AISP), Mashhad, Iran, pp. 13–17 (2015).

    Google Scholar 

  41. De, A., Chadha, H., & Gupta, S. (2006). Detection of forgery in digital video. In Proceedings of 10th World Multi Conference on Systems, Cybernetics and Informatics (pp. 229–233).

    Google Scholar 

  42. Wang, W., Jiang, X., Wang, S., & Meng, W. (2014). Identifying video forgery process using optical flow. In Digital forensics and watermarking (pp. 244–257). Berlin: Springer.

    Google Scholar 

  43. Lin, G. -S., Chang, J. -F., Chuang, F. -H. (2011). Detecting frame duplication based on spatial and temporal analyses. In Proceedings of 6th IEEE International Conference on Computer Science and Education (ICCSE’11), SuperStar Virgo, Singapore, pp. 1396–1399.

    Google Scholar 

  44. Ghosh, S., Rana, A., & Kansal, V. (2017). Software defect prediction system based on linear and nonlinear manifold detection. In Proceedings of the 11th INDIACom; INDIACom-2017; IEEE Conference ID: 40353, 4th International Conference on—Computing for Sustainable Global Development‖ (INDIACom 2107) (pp. 5714–5719). INDIACom-2017; ISSN 0973–7529; ISBN 978–93–80544–24–3.

    Google Scholar 

  45. Ghosh, S., Rana, A., & Kansal, V. (2018). A nonlinear manifold detection based model for software defect prediction. International Conference on Computational Intelligence and Data Science; Procedia Computer Science, 132(8), 581–594.

    Google Scholar 

  46. Ghosh, S., Rana, A., & Kansal, V. (2019). Statistical assessment of nonlinear manifold detection based software defect prediction techniques. International Journal of Intelligent Systems Technologies and Applications, Inderscience, Scopus Indexed, 18(6), 579–605. https://doi.org/10.1504/IJISTA.2019.102667.

    Article  Google Scholar 

  47. Luo, W., Wu, M., & Huang, J. (2008). MPEG recompression detection based on block artifacts. In E. J. Delp, P. W. Wong, J. Dittmann, N. D. Memon, (Eds.), Proceedings of SPIE Security, Forensics, Steganography, and Watermarking of Multimedia Contents X (Vol. 6819), San Jose, CA.

    Google Scholar 

  48. Su, Y., Nie, W., & Zhang, C. (2011). A frame tampering detection algorithm for MPEG videos. In Proceedings of 6th IEEE Joint International Information Technology and Artificial Intelligence Conference, Vol. 2, pp. 461–464. Chongqing, China.

    Google Scholar 

  49. Vázquez-Padín, D., Fontani, M., Bianchi, T., Comesana, P., Piva, A., & Barni, M. (2012). Detection of video double encoding with GOP size estimation. In Proceedings on IEEE International Workshop on Information Forensics and Security, Tenerife, Spain, Vol. 151.

    Google Scholar 

  50. Su, Y., Zhang, J., & Liu, J. (2009). Exposing digital video forgery by detecting motion-compensated edge artifact. In Proceedings of International Conference on Computational Intelligence and Software Engineering (Vol. 1, no. 4, pp. 11–13). Wuhan, China.

    Google Scholar 

  51. Dong, Q., Yang, G., & Zhu, N. (2012). A MCEA based passive forensics scheme for detecting framebased video tampering. Digital Investigation, 9(2), 151–159.

    Article  Google Scholar 

  52. Kancherla, K., & Mukkamal, S. (2012). Novel blind video forgery detection using Markov models on motion residue. Intelligent Information and Database System, 7198, 308–315.

    Article  Google Scholar 

  53. Fontani, M., Bianchi, T., De Rosa, A., Piva, A., & Barni, M. (2011). A Dempster-Shafer framework for decision fusion in image forensics. In Proceedings of IEEE International Workshop on Information Forensics and Security (WIFS’11) (pp. 1–6), Iguacu Falls, SA. https://doi.org/10.1109/WIFS.2011.6123156.

  54. Fontani, M., Bianchi, T., De Rosa, A., Piva, A., & Barni, M. (2013). A framework for decision fusion in image forensics based on Dempster-Shafer theory of Evidence. IEEE Transactions on Information Forensics and Security, 8(4), 593–607. https://doi.org/10.1109/TIFS.2013.2248727.

  55. Fontani, M., Bonchi, A., Piva, A., & Barni, M. (2014). Countering antiforensics by means of data fusion. In Proceedings of SPIE Conference on Media Watermarking, Security, and Forensics. https://doi.org/10.1117/12.2039569.

  56. Stamm, M. C., & Liu, K. J. R. (2011). Anti-forensics for frame deletion/addition in mpeg video. In Proceedings of IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP’11) (pp. 1876–1879), Prague, Czech Republic.

    Google Scholar 

  57. Stamm, M. C., Lin, W. S., & Liu, K. J. R. (2012). Temporal forensics and anti-forensics for motion compensated video. IEEE Transactions on Information Forensics and Security, 7(4), 1315–1329.

    Article  Google Scholar 

  58. Liu, J., & Kang, X. (2016). Anti-forensics of video frame deletion. [Online] https://www.paper.edu.cn/download/downPaper/201407-346. Accessed 9 July (2016).

  59. Fan, W., Wang, K., & Cayere, F., et al. (2013). A variational approach to JPEG anti-forensics. In Proceedings of IEEE 38th International Conference on Acoustics, Speech, and Signal Processing (ICASSP’13) (pp. 3058–3062), Vancouver, Canada.

    Google Scholar 

  60. Bian, S., Luo, W., & Huang, J. (2013). Exposing fake bitrate video and its original bitrate. In Proceeding of IEEE International Conference on Image Processing (pp. 4492–4496).

    Google Scholar 

  61. CASIA Tampered Image Detection Evaluation Database. [Online]. https://forensics.idealtest.org:8080. Accessed 30 Mar (2016).

  62. Tralic, D., Zupancic, I., Grgic, S., Grgic, M., CoMoFoD—New Database for Copy-

    Google Scholar 

  63. Move Forgery Detection. In: Proceedings of 55th International Symposium ELMAR, Zadar, Croatia (pp. 49–54), [Online]. https://www.vcl.fer.hr/comofod/download.html. Accessed 18 July (2016).

  64. CFReDS—Computer Forensic Reference Data Sets, [Online]. https://www.cfreds.nist.gov/. Accessed 17 May (2016).

  65. Kwatra, V., Schödl, A., Essa, I., Turk, G., & Bobick, A. F. (2003). Graph cut textures image and video synthesis using graph cuts. ACM Transactions on Graphics, 22(3), 277–286.

    Article  Google Scholar 

  66. Pèrez, P., Gangnet, M., & Blake, A. (2003). Poisson image editing. ACM Transactions on Graph. (SIGGRAPH’03, 22(3), 313–318.

    Google Scholar 

  67. Criminisi, A., Pèrez, P., & Toyama, K. (2004). Region filling and object removal by exemplar-based image inpainting. IEEE Transactions on Image Processing, 13(9), 1200–1212.

    Article  Google Scholar 

  68. Shen, Y., Lu, F., Cao, X., & Foroosh, H. (2006). Video completion for perspective camera under constrained motion. In Proceedings of 18th IEEE International Conference on Pattern Recognition (ICPR’06) (pp. 63–66). Hong Kong, China.

    Google Scholar 

  69. Komodakis, N., & Tziritas, G. (2007). Image completion using efficient belief propagation via priority scheduling and dynamic pruning. IEEE Transactions on Image Processing, 16(11), 2649–2661.

    Article  MathSciNet  Google Scholar 

  70. Patwardhan, K. A., Sapiro, J., & Bertalmio, M. (2007). Video inpainting under constrained camera motion. IEEE Transactions on Image Processing, 16(2), 545–553.

    Article  MathSciNet  Google Scholar 

  71. Hays, J., & Efros, A. A. (2007). Scene completion using millions of photographs. ACM Transactions on Graph (SIGGRAPH’07), 26(3), 1–7.

    Google Scholar 

  72. Columbia Image Splicing Detection Evaluation Dataset. [Online]. https://www.ee.columbia.edu/ln/dmvv/downloads/AuthSplicedDataSet/AuthSplicedDataSet.htm. Accessed 3 June (2016).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhishek Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, V., Singh, A., Kansal, V., Gaur, M. (2021). A Comprehensive Survey on Passive Video Forgery Detection Techniques. In: Khanna, A., Singh, A.K., Swaroop, A. (eds) Recent Studies on Computational Intelligence. Studies in Computational Intelligence, vol 921. Springer, Singapore. https://doi.org/10.1007/978-981-15-8469-5_4

Download citation

Publish with us

Policies and ethics