Skip to main content

Autonomous Vehicle Simulation Using Deep Reinforcement Learning

  • Conference paper
  • First Online:
Machine Learning for Predictive Analysis

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 141))

Abstract

The reinforcement learning algorithms have been proven to be extremely accurate in performing a variety of tasks. These algorithms have outperformed humans in traditional games. This paper proposes a reinforcement learning based approach to autonomous driving. The autonomous vehicles must be able to deal with all external situations to ensure safety and to avoid undesired circumstances such as collisions. Thus, we propose the use of deep deterministic policy gradient (DDPG) algorithm which is able to work in a complex and continuous domain. To avoid physical damage and reduce costs, we choose to use a simulator to test the proposed approach. The CARLA simulator would be used as the environment. To fit the DDPG algorithm to the CARLA environment, our network architecture consists of critic and actor networks. The performance would be evaluated based on rewards generated by the agent while driving in the simulated environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Singh, Critical reasons for crashes investigated in the national motor vehicle crash causation survey. Technical Report, Traffic Safety Facts Crash Stats, National Highway Traffic Safety Administration (2015)

    Google Scholar 

  2. V. Mnith, K. Kavukcuoglu, D. Silver, A. Graves, L. Antonoglou, D. Wierstra, M. Riedmiller, Playing Atari with deep reinforcement learning. Tech. Rep. (2013). https://arxiv.org/abs/1312.5602

  3. H. Daume, A course in machine learning (2017). http://ciml.info/dl/v0_99/ciml-v0_99-ch18.pdf

  4. F. Codevilla, M. Muller, A. Lopez, V. Koltun, A. Dosovitskiy, End-to-end driving via conditional imitation learning, in IEEE International Conference on Robotics and Automation (ICRA) (IEEE Press, Brisbane, QLD, 2018), pp. 4693–4700

    Google Scholar 

  5. T. Osa, J. Pajarinen, G. Neumann, J.A. Bagnell, P. Abbeel, J. Peters, An algorithm perspective on imitation learning. Found. Trends Robot. 7(1–2), 1–179 (2018)

    Google Scholar 

  6. A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, V. Koltun, CARLA: an open driving simulator, in 1st Conference of Robot Learning (CoRL 2017) (PMLR Press, Mountain View, USA, 2017), pp. 1–16

    Google Scholar 

  7. Y. Pan, C. Cheng, K. Saigol, K. Lee, X. Yan, E. Theodorou, B. Boots, Agile autonomous driving using end-to-end deep imitation learning. Tech. Rep. (2019). http://arxiv.org/abs/1709.07174

  8. Open AI Spinning Up. https://spinningup.openai.com/en/latest/algorithms/ddpg.html. Accessed 10 Jan 2020

  9. H. Yi, Deep deterministic policy gradient for autonomous vehicle driving, in 20th International Conference on Artificial Intelligence (ICAI’18) (CSREA Press, Nevada, USA, 2018), pp. 191–194

    Google Scholar 

  10. M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang, J. Zhao, K. Zeiba, End to end learning for self driving cars. Tech. Rep. (2016). http://arxiv.org/abs/1604.07316

  11. F. Chollet, Deep Learning with Python (Manning, New York, 2018)

    Google Scholar 

  12. E. Bibbona, G. Panfilo, P. Tavella, The Ornstein-Uhlenbeck process as a model of a low pass filtered white noise. J. Metrol. 45, 117–126 (2008)

    MathSciNet  Google Scholar 

  13. A. Sauer, N. Savinov, A. Geiger, Conditional affordance learning for driving in urban environments, in 2nd Conference on Robot Learning (CoRL 2018) (PMLR Press, Zurich, Switzerland, 2018), pp. 237–252

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rishikesh Kadam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kadam, R., Vidhani, V., Valecha, B., Bane, A., Giri, N. (2021). Autonomous Vehicle Simulation Using Deep Reinforcement Learning. In: Joshi, A., Khosravy, M., Gupta, N. (eds) Machine Learning for Predictive Analysis. Lecture Notes in Networks and Systems, vol 141. Springer, Singapore. https://doi.org/10.1007/978-981-15-7106-0_53

Download citation

Publish with us

Policies and ethics