Skip to main content

Comprehensive Study of Fetal Monitoring Methods for Detection of Fetal Compromise

  • Conference paper
  • First Online:
Machine Learning for Predictive Analysis

Abstract

Fetal monitoring usually refers to monitoring fetal heart rate (FHR) for detection fetal well-being. This is important activity carried out by doctors during prepartum, intrapartum phase as per health requirement of patient. Fetal monitoring is required to reduce chances of fetal to become hypoxic (when fetal is deprived from sufficient oxygen) that can cause fetal brain injury and even fetal death. Fetal monitoring plays important role in reducing mortality and morbidity rate. The most common noninvasive fetal monitoring device is cardiotocograph (CTG). CTG captures FHR based on Doppler ultrasound principle and uterine contractions (UC) based on pressure transducers. The present study highlights accuracy limitations of CTG and proposes more accurate noninvasive fetal ECG (NIfECG) as data acquisition methods to acquire FHR and electrohysterogram (EHG) to capture UC. CTG interpretation is one of the decision-making parameters used by doctors for early intervention like caesarian section. CTG interpretation often suffers from inter-observer and intra-observer agreement of CTG patterns which are non-reassuring. To overcome this limitation, computerized analysis can be useful. The present study also discusses usage of machine learning to detect fetal compromise. Further, in addition to FHR and UC analysis, we also propose to use ST waveform analysis to improve results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. World Health Statistics (2018). https://apps.who.int/iris/bitstream/handle/10665/272596/9789241565585-eng.pdf. Last accessed 2020/02/09

  2. J.E. Lawn, H. Blencowe, P. Waiswa, A. Amouzou, C. Mathers, D. Hogan, V. Flenady, J.F. Frøen, Z.U. Qureshi, C. Calderwood, S. Shiekh, F.B. Jassir, D. You, E.M. McClure, M. Mathai, S. Cousens, For the lancet ending preventable stillbirths series study group* with the lancet stillbirth epidemiology investigator group, ending preventable stillbirths 2 stillbirths: rates, risk factors, and acceleration towards 2030. Lancet 387, 587–603 (2016)

    Google Scholar 

  3. T.Y. Euliano, S. Darmanjian, M.T. Nguyen, J.D. Busowski, N. Euliano, A.R. Gregg, Monitoring fetal heart rate during labor: a comparison of three methods. Hindawi J. Pregnancy 2017, 5 (2017). Article ID 8529816

    Google Scholar 

  4. T.Y. Euliano, M.T. Nguyen, S. Darmanjian et al., Monitoring uterine activity during labor: a comparison of 3 methods. Am. J. Obstet Gynecol. 208:66, e1–e6 (2013)

    Google Scholar 

  5. J. Jezewski, J. Wrobel, K. Horoba, Comparison of doppler ultrasound and direct electrocardiography acquisition techniques for quantification of fetal heart rate variability. IEEE Trans. Biomed. Eng. 53(5) (2006)

    Google Scholar 

  6. J. Jezewski, J. Wrobel, A. Matonia, K. Horoba, R. Martinek, T. Kupka, M. Jezewski, Is abdominal fetal electrocardiography an alternative to doppler ultrasound for FHR variability evaluation? Front. Physiol. 8, 305 (2017). https://doi.org/10.3389/fphys.2017.00305

    Article  Google Scholar 

  7. B.K. Subramanian, S. Kaulgud, V.R. Joshi, G. Godbole, Comparative study to determine the reliability and accuracy of the fetal lite electronic fetal monitor when compared with conventional cardiotocography. 671–676 (2018). https://doi.org/10.1109/comsnets.2018.8328293

  8. R. Mujumdar, P. Nadar, A. Bondre, A. Kulkarni, S. Pathak, Principal component analysis (PCA) based single-channel, non-invasive fetal ECG extraction (2019). https://fetosense.com/assets/publictions/PCA.pdf

  9. S. Parveen, Umbilical cord arterial blood base excess as gold standard for fetal wellbeing screening test validity at term delivery. J. Pak. Med. Assoc. 60(5), 347–350 (2010)

    Google Scholar 

  10. A. Sacco, J. Muglu, R. Navaratnarajah, M. Hogg, ST analysis for intrapartum fetal monitoring. Obstetrician Gynaecologist 17, 5–12 (2015)

    Google Scholar 

  11. I. Amer-Wahlin, S. Arulkumaran, H. Hagberg, K. Maršál, G.H.A. Vissere, Fetal electrocardiogram: ST waveform analysis in intrapartum surveillance. BJOG 114, 1191–1193 (2007)

    Google Scholar 

  12. L.D. Devoe, Fetal ECG analysis for intrapartum electronic fetal monitoring: a review. Clin. Obstet. Gynecol. 54(1), 56–65 (2011)

    Google Scholar 

  13. P. Olofsson, D. Ayres-de-Campos, J. Kessler, B. Tendal, B.M. Yli, L. Devoe, A critical appraisal of the evidence for using cardiotocography plus ECG ST interval analysis for fetal surveillance in labor. Part II: the metaanalyses. Acta Obstet. Gynecol. Scand. 93(6), 571–586. discussion 587–8 (2014). https://doi.org/10.1111/aogs.12412

  14. E. Blix, K.G. Brurberg, E. Reierth, L.M. Reinar, P. Øian, ST waveform analysis versus cardiotocography alone for intrapartum fetal monitoring: a systematic review and meta-analysis of randomized trials. Acta Obstet. Gynecol. Scand 95(1), 16–27 (2016). https://doi.org/10.1111/aogs.12828

  15. E. Heintz, T. Brodtkorb, N. Nelson, L. Levin, The long-term cost-effectiveness of fetal monitoring during labour: a comparison of cardiotocography complemented with ST analysis versus cardiotocography alone. BJOG 2008(115), 1676–1687 (2008)

    Google Scholar 

  16. H. Norén, A. Carlsson, Reduced prevalence of metabolic acidosis at birth: an analysis of established STAN usage in the total population of deliveries in a Swedish district hospital. Am. J. Obstet. Gynecol. 202(6), 546.e1–546.e7 (2010). https://doi.org/10.1016/j.ajog.2009.11.033

  17. I. Amer-Wåhlin, A. Ugwumadu, B.M. Yli, A. Kwee, S. Timonen, V. Cole, D. Ayres-de-Campos, G.E. Roth, C. Schwarz, L.A. Ramenghi, T. Todros, V. Ehlinger, C. Vayssiere, Study group of intrapartum fetal monitoring (European association of perinatal medicine).: fetal electrocardiography ST-segment analysis for intrapartum monitoring: a critical appraisal of conflicting evidence and a way forward. Am. J. Obstet. Gynecol. 221(6), 577–601.e11 (2019). https://doi.org/10.1016/j.ajog.2019.04.003

  18. G.S. Dawes, C.R.S. Houghton, C.W.G. Redman, Baseline in human fetal heart-rate records. Br. J. Obstet. Gynaecol. 89(4), 270–5 (1982)

    Google Scholar 

  19. R. Mantel, H.P. van Geijn, F.J. Caron, J.M. Swartjes, E.E. van Woerden, H.W. Jongsma, Computer analysis of antepartum fetal heart rate: 2. Detection of accelerations and decelerations. Int. J. Biomed. Comput. 25(4), 273–86 (1990)

    Google Scholar 

  20. J. Pardey, M. Moulden, C.W.G. Redman, A computer system for the numerical analysis of nonstress tests. Am. J. Obstet. Gynecol. 186(5), 1095–1103 (2002)

    Google Scholar 

  21. G.G. Georgoulas, C.D. Stylios, G. Nokas, P.P. Groumpos, Classification of fetal heart rate during labour using hidden Markov models, in 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No. 04CH37541), Budapest, vol. 3 (2004), pp. 2471–2475

    Google Scholar 

  22. C. Sundar, M. Chitradevi, G. Geetharamani, Classification of cardiotocogram data using neural network based machine learning technique. Int. J. Comput. Appl. 47(14) (2012). ISSN 0975-888

    Google Scholar 

  23. K. Agrawal, H. Mohan, Cardiotocography analysis for fetal state classification using machine learning algorithms, in 2019 International Conference on Computer Communication and Informatics (ICCCI), Coimbatore, Tamil Nadu, India (2019), pp. 1–6

    Google Scholar 

  24. V. Nagendra, H.G. Divya, S.S. Corns, S. Long, Evaluation of support vector machines and forest classifiers in a real-time fetal monitoring system based on cardiotocography data, in 2017 IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB), Manchester (2017), pp. 1–6

    Google Scholar 

  25. Z. Cömerta, A.F. Kocamaz, Comparison of machine learning techniques for fetal heart rate classification, in Special issue of the 3rd International Conference on Computational and Experimental Science and Engineering (ICCESEN 2016) (2016)

    Google Scholar 

  26. Z. Cömert, A.F. Kocamaz, A novel software for comprehensive analysis of cardiotocography signals “CTG-OAS”, in 2017 International Artificial Intelligence and Data Processing Symposium (IDAP), Malatya (2017), pp. 1–6

    Google Scholar 

  27. H. Ocak, A medical decision support system based on support vector machines and the genetic algorithm for the evaluation of fetal well-being. J. Med. Syst. 37, 9913 (2013). https://doi.org/10.1007/s10916-012-9913-4

    Article  Google Scholar 

  28. M.E.B. Menai, F.J. Mohder, F. Al-mutairi, Influence of feature selection on Naïve Bayes classifier for recognizing patterns in cardiotocograms. J. Med. Bioeng. 2(1), 66–70 (2013). https://doi.org/10.12720/jomb.2.1.66-70

  29. E.M. Karabulut, T. Ibrikci, Analysis of cardiotocogram data for fetal distress determination by decision tree based adaptive boosting approach. J. Comput. Commun. 2, 32–37 (2014). https://doi.org/10.4236/jcc.2014.29005

  30. P.A. Warrick, E.F. Hamilton, D. Precup, R.E. Kearney, Classification of normal and hypoxic fetuses from systems modeling of intrapartum cardiotocography. IEEE Trans. Biomed. Eng. 57(4), 771–779 (2010). https://doi.org/10.1109/tbme.2009.2035818. PMID 20659819

  31. E.Y. Jlmaz, Ç. Kılıkçıer, Determination of fetal state from cardiotocogram using LS-SVM with particle swarm optimization and binary decision tree. Comput. Math Method. Med. 2013, 487179 (2013). https://doi.org/10.1155/2013/487179

  32. L. Xu, C.W.G. Redman, S.J. Payne, A. Georgieva, Feature selection using genetic algorithms for fetal heart rate analysis. Physiol. Meas. 35(7), 1357–1371 (2014). https://doi.org/10.1088/0967-3334/35/7/1357

  33. A. Georgieva, S.J. Payne, M. Moulden et al., Artificial neural networks applied to fetal monitoring in labour. Neural Comput. Appl. 22, 85–93 (2013). https://doi.org/10.1007/s00521-011-0743-y

    Article  Google Scholar 

  34. J. Mathew, C.K. Pang, M. Luo, W.H. Leong, Classification of Imbalanced data by oversampling in Kernel space of support vector machines. IEEE Trans. Neural Netw. Learn. Syst. 29(9), 4065–4076 (2018)

    Google Scholar 

  35. J. Spilka, J. Frecon, R. Leonarduzzi, N. Pustelnik, P. Abry, M. Doret, Sparse support vector machine for intrapartum fetal heart rate classification. IEEE J. Biomed. Health Inform. 21(3), 664–671 (2017)

    Google Scholar 

  36. P. Fergus, A. Hussain, D. Al-Jumeily, D.-S. Huang, N. Bouguila, Classification of caesarean section and normal vaginal deliveries using foetal heart rate signals and advanced machine learning algorithms. BioMed. Eng. OnLine 16, 89 (2017). https://doi.org/10.1186/s12938-017-0378-z

  37. S. Rhöse, A.M.F. Heinis, F. Vandenbussche, J. Van Drongelen, J. Van Dillen, Inter-observer and intra-observer agreement of non-reassuring cardiotocography analysis and subsequent clinical management. Acta Obstet. Gynecol. Scand 93, 596–602 (2014)

    Google Scholar 

  38. Z. Zhao, Y. Zhang, Z. Comert, Y. Deng, Computer-aided diagnosis system of fetal hypoxia incorporating recurrence plot with convolutional neural network. Front. Physiol. 10, 255 (2019). https://doi.org/10.3389/fphys.2019.00255

    Article  Google Scholar 

  39. P. Fergus, C. Chalmers, C.C. Montanez, D. Reilly, P. Lisboa, B. Pineles, Modelling segmented cardiotocography time-series signals using one-dimensional convolutional neural networks for the early detection of abnormal birth outcomes. IEEE Trans. (in press) (2019). https://arxiv.org/abs/1908.02338

  40. A. Petrozziello, C.W.G. Redman, A.T. Papageorghiou, I. Jordanov, A. Georgieva, Multimodal convolutional neural networks to detect fetal compromise during labor and delivery. IEEE Access. 7, 112026–112036 (2019)

    Google Scholar 

  41. D. Urnbull, A. Salter, B. Simpson et al., Comparing the effect of STan (cardiotocographic electronic fetal monitoring (CTG) plus analysis of the ST segment of the fetal electrocardiogram) with CTG alone on emergency caesarean section rates: study protocol for the STan Australian randomised controlled trial (START). Trials 20, 539 (2019). https://doi.org/10.1186/s13063-019-3640-9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vidya Sujit Kurtadikar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kurtadikar, V.S., Pande, H.M. (2021). Comprehensive Study of Fetal Monitoring Methods for Detection of Fetal Compromise. In: Joshi, A., Khosravy, M., Gupta, N. (eds) Machine Learning for Predictive Analysis. Lecture Notes in Networks and Systems, vol 141. Springer, Singapore. https://doi.org/10.1007/978-981-15-7106-0_15

Download citation

Publish with us

Policies and ethics