Skip to main content

Abstract

Data mining seeks to discover hidden relationship in data attributes for decision making. Mostly, search algorithms help to find hidden relationships between data attributes by counting the number of occurrence without focusing on the closeness of time dimension. In this chapter, we focus on how closeness preference model can be applied in discovering association rules instead of only using support and confidence value which are the traditional method of discovering association rules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Agbehadji, I. E. (2011). Solution to the travel salesman problem, using omicron genetic algorithm. Case study: Tour of national health insurance schemes in the Brong Ahafo region of Ghana (Online Master’s Thesis).

    Google Scholar 

  • Agbehadji, I. E., Millham, R., & Fong, S. (2016). Wolf search algorithm for numeric association rule mining. In: 2016 IEEE International Conference on Cloud Computing and Big Data Analysis (ICCCBDA 2016), Chengdu, China.

    Google Scholar 

  • Agrawal, R., & Srikant, R. (1994a). Fast algorithms for mining association rules in large databases. In: Proceedings 20th International Conference on Very Large Data Bases (pp. 478–499).

    Google Scholar 

  • Agrawal, R., & Srikant, R. (1994b). Fast algorithms for mining association rules. In: Proceedings of the 20th International Conference on Very Large Databases, Santiago, Chile (pp. 487–499).

    Google Scholar 

  • Al-Ani, A. (2007). Ant colony optimization for feature subset selection. World Academy of Science, Engineering and Technology International Journal of Computer, Electrical, Automation, Control and Information Engineering, 1(4).

    Google Scholar 

  • Cao, L., Luo, D., & Zhang, C. (2007). Knowledge actionability: Satisfying technical and business interestingness. International Journal Business Intelligence and Data Mining, 2(4).

    Google Scholar 

  • Cheng, S., Shi, Y., Qin, Q., & Bai, R. (2013). Swarm intelligence in big data analytics. Berlin: Springer.

    Book  Google Scholar 

  • Dorigo, M., Birattari, M., & Stützle, T. (2006). Ant colony optimization: Artificial ants as a computational intelligence technique.

    Google Scholar 

  • Dorigo, M., Maniezzo, V., & Colorni, A. (1996). Ant system: Optimization by a colony of cooperating agents. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 26(1), 29–41.

    Google Scholar 

  • Dunham, M. H., Xiao, Y., Gruenwald, L., & Hossain, Z. (2001). A survey of association rules.

    Google Scholar 

  • Fister, I., Jr., Fong, S., Bresta, J., & Fister, I. (2014). Towards the self-adaptation of the bat algorithm. In: Proceedings of the IASTED International Conference, February 17–19, 2014 Innsbruck, Austria Artificial Intelligence and Applications.

    Google Scholar 

  • Fung, B. C. M., Wang, K., & Liu, J. (2012). Direct discovery of high utility itemsets without candidate generation. In: 2012 IEEE 12th International Conference on Data Mining.

    Google Scholar 

  • Garcia, S., Luengo, J., & Herrera, F. (2015). Data preprocessing in data mining. In Intelligent systems reference library (Vol. 72). Springer International Publishing Switzerland. https://doi.org/10.1007/978-3-319-10247-4_3.

  • Geng, L., & Hamilton, H. J. (2006). Interestingness measures for data mining: A survey. ACM Computing Surveys, 38(3), Article 9. (Publication date: September 2006).

    Google Scholar 

  • Han, J., Cheng, H., Xin, D., & Yan, X. (2007). Frequent pattern mining: current status and future directions. Data Mining Knowledge Discovery, 15, 55–86.

    Article  MathSciNet  Google Scholar 

  • Han, J., & Fu, Y. (1995). Discovery of multiple-level association rules from large databases. In: Proceedings of the 21st International Conference on Very Large Databases, Zurich, Swizerland (pp. 420–431).

    Google Scholar 

  • Heraguemi, K. E., Kamel, N., & Drias, H. (2015). Association rule mining based on bat algorithm. Journal of Computational and Theoretical Nanoscience, 12, 1195–1200.

    Article  Google Scholar 

  • Jagtap, S., Kodge, B. G., Shinde, G. N., & Devshette P. M. (2012). Role of association rule mining in numerical data analysis. World Academy of Science, Engineering and Technology International Journal of Computer, Electrical, Automation, Control and Information Engineering, 6(1).

    Google Scholar 

  • Kennedy, J., & Eberhart, R. C. (1995). Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, Piscataway, NJ, pp 1942–1948.

    Google Scholar 

  • Krause, J., Cordeiro, J., Parpinelli, R. S., & Lopes, H. S. (2013). A survey of swarm algorithms applied to discrete optimization problems.

    Google Scholar 

  • Kuo, R. J., Chao, C. M., & Chiu, Y. T. (2011). Application of PSO to association rule. Applied Soft Computing.

    Google Scholar 

  • Kuo, R. J., & Shih, C. W. (2007). Association rule mining through the ant colony system for National Health Insurance Research Database in Taiwan. Computers & Mathematics with Applications, 54(11–12), 1303–1318.

    Article  MathSciNet  Google Scholar 

  • Mannila, H., Toivonen, H., & Verkamo, A. I. (1997). Discovery of frequent episodes in event sequences. Data Mining and Knowledge Discovery, 1(3), 259–289.

    Article  Google Scholar 

  • Miller, R.J., & Yang, Y. (1997). Association rules over interval data. In: SIGMOD 1997, Proceedings ACM SIGMOD International Conference on Management of Data, 13–15 May 1997, Tucson, Arizona, USA (pp. 452–461). ACM Press.

    Google Scholar 

  • Olmo, J. L., Luna, J. M., Romero, J. R., & Ventura, S. (2011). Association rule mining using a multi-objective grammar-based ant programming algorithm. In: 2011 11th International Conference on Intelligent Systems Design and Applications (pp. 971–977). IEEE.

    Google Scholar 

  • Palshikar, G. K., Kale, M. S., & Apte, M. M. (2007). Association rules mining using heavy itemsets.

    Google Scholar 

  • Piatetsky-Shapiro, G. (1991). Discovery, analysis and presentation of strong rules. In G. Piatetsky-Shapiro & W. J. Frawley (Eds.), Knowledge Discovery in Databases (p. 229). AAAI.

    Google Scholar 

  • Qodmanan, H. R., Nasiri, M., & Minaei-Bidgoli, B. (2011). Multi objective association rule mining with genetic algorithm without specifying minimum support and minimum confidence. www.elsevier.com/locate/eswa.

  • Railean, I., Lenca, P., Moga, S., & Borda, M. (2013). Closeness-preference—A-new-interestingness-measure-for-sequential-rules-mining. Knowledge-Based-Systems.

    Google Scholar 

  • Rajaraman, A., & Ullman, J. (2011). Mining of massive datasets. New York: Cambridge University Press.

    Book  Google Scholar 

  • Sarath, K. N. V. D., & Ravi, V. (2013). Association rule mining using binary particle swarm optimization. Engineering Applications of Artificial Intelligence. www.elsevier.com/locate/engappai.

  • Shorman, H. M. A., & Jbara, Y. H. (2017, July). An improved association rule mining algorithm based on Apriori and Ant Colony approaches. IOSR Journal of Engineering (IOSRJEN), 7(7), 18–23. ISSN (e): 2250-3021, ISSN (p): 2278-8719.

    Google Scholar 

  • Shrivastava, A. K., & Panda, R. N. (2014). Implementation of Apriori algorithm using WEKA. KIET International Journal of Intelligent Computing and Informatics, 1(1).

    Google Scholar 

  • Silberschatz, A., & Tuzhilin, A. (1995). On subjective measures of interestingness in knowledge discovery. Knowledge Discovery and Data Mining, 275–281.

    Google Scholar 

  • Song, M., & Rajasekaran, S. (2006). A transaction mapping algorithm for frequent itemsets mining. IEEE Transactions on Knowledge and Data Engineering, 18(4), 472–481.

    Article  Google Scholar 

  • Srikant, R., & Agrawal, R. (1996). Mining quantitative association rules in large relational tables. In: Proceedings of the 1996 ACM SIGMOD International Conference on Management of Data, Montreal, Quebec, Canada (pp. 1–12), 4–6 June 1996.

    Google Scholar 

  • Stützle, T., & Dorigo, M. (2002). Ant colony optimization. Cambridge, MA: MIT Press. https://pdfs.semanticscholar.org/7c72/393febe25ef5ce2f5614a75a69e1ed0d9857.pdf.

  • Sudhir, J., Kodge, B. G., Shinde, G. N., & Devshette P. M. (2012). Role of association rule mining in numerical data analysis. World Academy of Science, Engineering and Technology International Journal of Computer, Electrical, Automation, Control and Information Engineering, 6(1).

    Google Scholar 

  • Sumathi, S., & Sivanandam, S. N. (2006). Introduction to data mining principles. Studies in Computational Intelligence (SCI), 29, 1–20. www.springer.com/cda/content/…/cda…/9783540343509-c1.pdf.

  • Tang, R., Fong, S., Yang, X-S, & Deb, S. (2012). Wolf search algorithm with ephemeral memory. IEEE.

    Google Scholar 

  • Tseng, V. S, Liang, T. and Chu, C (2006), Efficient Mining of Temporal High Utility Itemsets from Data streams. UBDM’06, August 20, 2006, Philadelphia, Pennsylvania, USA.

    Google Scholar 

  • Wang, K., Zhou, S., & Han, J. (2002). Profit mining: from patterns to actions. In: EBDT 2002, Prague, Czech (pp. 70–87).

    Google Scholar 

  • Wei, Y., Huang, J., Zhang, Z., & Kong, J. (2015). SIBA: A fast frequent item sets mining algorithm based on sampling and improved bat algorithm.

    Google Scholar 

  • Wu, C., Buyya, R., Ramamohanarao, K. (2016). Big Data Analytics = Machine Learning + Cloud Computing. arXiv preprint arXiv:1601.03115.

  • Yang, X.-S. (2008). Nature-inspired metaheuristic algorithms. Luniver Press.

    Google Scholar 

  • Yang, X. S. (2009). Firefly algorithm, Levy flights and global optimization. In: XXVI Research and Development in Intelligent Systems. Springer, London, UK, pp 209–218.

    Google Scholar 

  • Yang, X. (2010). A new metaheuristic bat-inspired algorithm. In: Nature Inspired Cooperative Strategies for Optimization (NICSO 2010). Springer, pp. 65–74.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Millham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Millham, R., Agbehadji, I.E., Yang, H. (2021). Extracting Association Rules: Meta-Heuristic and Closeness Preference Approach. In: Fong, S., Millham, R. (eds) Bio-inspired Algorithms for Data Streaming and Visualization, Big Data Management, and Fog Computing. Springer Tracts in Nature-Inspired Computing. Springer, Singapore. https://doi.org/10.1007/978-981-15-6695-0_5

Download citation

Publish with us

Policies and ethics