Skip to main content

The hDEBSA Global Optimization Method: A Comparative Study on CEC2014 Test Function and Application to Geotechnical Problem

  • Chapter
  • First Online:
Bio-inspired Neurocomputing

Part of the book series: Studies in Computational Intelligence ((SCI,volume 903))

Abstract

In geotechnical engineering, investigation of seismic earth pressure coefficient is a fundamental theme of study for retaining wall. During this study, the seismal active earth pressure coefficient on the rear of the wall supporting c − Φ backfill has been formulated by the help of limit equilibrium method. This type of problems is highly complex nonlinear optimization problems. Therefore, it will very be difficult to analyze the problem using classical optimization techniques. A hybrid algorithm called hDEBSA has been discussed in the present study which was proposed by joining the parts of DE with the segments of BSA calculation to investigation the pseudo-static seismic dynamic earth pressure coefficient. In hDEBSA, a modification of parameter of DE and BSA has been performed through self-adaption-based. The proficiency of the hDEBSA has been checked through CEC2014 test functions and applied to analyze the coefficient of seismic active earth pressure on the rear of the retaining wall supportive \(c -\Phi\) backfill. The result obtained by this algorithm is compared with state-of-the-art other algorithms and are found to be in agreement. The achieved results of active earth pressure coefficient are in contrast with different results available found in the literature. Additionally, the impact of seismic parameters, soil and wall parameters on the earth pressure coefficient has been investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Holland, J.H.: Adaptation in natural and artificial systems. University of Michigan Press (1975)

    Google Scholar 

  2. Storn, R., Price, K.: Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. J. Global Optim. 11(4), 341–359 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Eberhart, R., Shi, Y.: Particle swarm optimization: developments, applications and resources in evolutionary computation. Proc. 2001 Congr. 81, 81–86 (2001)

    Article  Google Scholar 

  4. Shi, Y., Eberhart R.: A modified particle swarm optimizer. In: Evolutionary Computation Proceedings, IEEE World Congress on Computational Intelligence (1998)

    Google Scholar 

  5. Akay, B., Karaboga, D.: Artificial bee colony algorithm for large-scale problem and engineering design optimization. J. Intell. Manuf. 23, 1001–1014 (2012)

    Article  Google Scholar 

  6. Lee, K.S.: Geem ZW (2005) A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice. Comput. Methods. Appl. Mech. Eng. 194, 3902–3933 (2005)

    Article  MATH  Google Scholar 

  7. Mahdavi, M., Fesanghary, M., Damangir, E.: An improved harmony search algorithm for solving optimization problems. Appl. Math. Comput. 188, 1567–1579 (2007)

    MathSciNet  MATH  Google Scholar 

  8. Civicioglu, P.: Backtracking search optimization algorithm for numerical optimization problems. Appl. Math. Comput. 219(15), 8121–8144 (2013)

    MathSciNet  MATH  Google Scholar 

  9. Rashedi, E., Nezamabadi-pour, H., Saryazdi, S.: GSA: a gravitational search algorithm. Inf. Sci. 179, 2232–2248 (2009)

    Article  MATH  Google Scholar 

  10. Liang, J.J., Qin, A.K., Suganthan, P.N., Baskar, S.: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans. Evol. Comput. 10(3), 281 (2006)

    Article  Google Scholar 

  11. van den Bergh, F., Engelbrecht, A.P.: A cooperative approach to particle swarm optimization. IEEE Trans. Evol. Comput. 8, 225–239 (2004)

    Article  Google Scholar 

  12. Mendes, R., Kennedy, J., Neves, J.: The fully informed particle swarm: simpler, may be better. IEEE Trans. Evol. Comput. 8, 204–210 (2004)

    Article  Google Scholar 

  13. Parsopoulos, K.E., Vrahatis, M.N.: UPSO—a unified particle swarm optimization scheme. Lect. Ser. Comput. Sci. 1, 868–873 (2004)

    Google Scholar 

  14. Nasir, Md, Das, S., Maity, D., Sengupta, S., Halder, U., Suganthan, P.N.: A dynamic neighborhood learning based particle swarm optimizer for global numerical optimization. Inf. Sci. 209, 16–36 (2012)

    Article  MathSciNet  Google Scholar 

  15. Nama, S., Saha, A.K., Ghosh, S.: Improved symbiotic organisms search algorithm for solving unconstrained function optimization. Decis. Sci. Lett. 5(3), 361–380 (2016)

    Article  Google Scholar 

  16. Nama, S., Saha, A.K., Ghosh, S.: Improved backtracking search algorithm for pseudo dynamic active earth pressure on retaining wall supporting c − Ф backfill. Appl. Soft Comput. 52, 885–897 (2017)

    Article  Google Scholar 

  17. Nama, S., Saha, A.K.: An ensemble symbiosis organisms search algorithm and its application to real world problems. Decis. Sci. Lett. 7(2), 103–118 (2018)

    Article  Google Scholar 

  18. Ezugwu, A.E., Els, R., Fonou-Dombeu, J.V., Naidoo, D., Pillay, K.: Parallel symbiotic organisms search algorithm. In: Misra, S. et al. (eds) Computational Science and Its Applications—ICCSA 2019. ICCSA 2019. Lecture Notes in Computer Science, vol. 11623. Springer, Cham (2019)

    Google Scholar 

  19. Mirjalili, S., Mohd Hashim, S.Z.: A new hybrid PSOGSA algorithm for function optimization. In: International Conference on Computer and Information Application (ICCIA 2010) (2010)

    Google Scholar 

  20. Pant, M., Thangaraj, R., Abraham, A.: A new PSO algorithm with crossover operator for global optimization problems. Innov. Hybr. Intell. Syst. ASC 44, 215–222 (2007)

    Article  Google Scholar 

  21. Zhang, L., Li, H., Jiao, Y.-C., Zhang, F.-S.: Hybrid Differential Evolution and the Simplified Quadratic Interpolation For Global Optimization, Copyright is held by the author/owner(s). GEC’09, June 12–14, 2009, Shanghai, China. ACM 978-1-60558-326-6/09/06 (2009)

    Google Scholar 

  22. Pant, M., Thangaraj, R.: DE-PSO: a new hybrid meta-heuristic for solving global optimization problems. New Mathem. Nat. Comput. 7(3), 363–381 (2011)

    Article  MathSciNet  Google Scholar 

  23. Nama, S., Saha, A.K., Ghosh, S.: A new ensemble algorithm of differential evolution and backtracking search optimization algorithm with adaptive control parameter for function optimization. Int. J. Ind. Eng. Comput. 7(2), 323–338 (2016)

    Google Scholar 

  24. Nama, S., Saha, A.K., Ghosh, S.: A hybrid symbiosis organisms search algorithm and its application to real world problems. Memet. Comput. 9(3), 261–280 (2017)

    Article  Google Scholar 

  25. Nama, S., Saha, A.K.: A new hybrid differential evolution algorithm with self-adaptation for function optimization. Appl. Intell. 48(7), 1657–1671 (2018)

    Article  Google Scholar 

  26. Nama, S., Saha, A.K.: A novel hybrid backtracking search optimization algorithm for continuous function optimization. Decis. Sci. Lett. 8(2), 163–174 (2019)

    Article  Google Scholar 

  27. Bolton, H.P.J., Heymann, G., Groenwold, A.: Global search for critical failure surface in slope stability analysis. Eng. Optim. 35, 51–65 (2003)

    Article  Google Scholar 

  28. Cheng, Y.M.: Global optimization analysis of slope stability by simulated annealing method with dynamic bounds and “dirac function”. Eng. Optim. 39(1), 17–32 (2007)

    Article  Google Scholar 

  29. Das S.K.: Slope Stability Analysis Using Genetic Algorithm. EJGE paper 2005-0504, (2014)

    Google Scholar 

  30. Deb, K., Goyal, M.: Optimizing engineering designs using combined genetic search. In: Proceedings of Seventh International Conference on Genetic Algorithms, pp. 512–28 (1997)

    Google Scholar 

  31. Cheng, Y.M., Li, L., Chi, S.C.: Performance studies on six heuristic global optimization methods in the location of critical slip surface. Comput. Geotech. 34, 462–484 (2007)

    Article  Google Scholar 

  32. Cheng, Y.M., Li, L., Chi, S., Wei, W.B.: Particle swarm optimization algorithm for location of critical non-circular failure surface in two dimensional slope stability analysis. Comput. Geotech. 34(2), 92–103 (2007)

    Article  Google Scholar 

  33. Sengupta, A., Upadhyay, A.: Locating the critical failure surface in a slope stability analysis by genetic algorithm. Appl. Soft Comput. 9, 387–392 (2009)

    Article  Google Scholar 

  34. Zolfaghari, A.R., Heath, A.C., Mc Combie, P.F.: Simple genetic algorithm search for critical non-circular failure surface in slope stability analysis. Comput. Geotech. 32, 139–152 (2005)

    Article  Google Scholar 

  35. Ahmadi-Nedushan, B., Varaee, H.O: Optimal design of reinforced concrete retaining walls using a swarm intelligence technique. In: Topping, B.H.V., Tsompanakis, Y. (eds) Proceedings of the First International Conference on Soft Computing Technology in Civil, Structural and Environmental Engineering, Civil-Comp Press, Stirlingshire, Scotland (2009)

    Google Scholar 

  36. Ghazavi, M., Bazzazian Bonab, S.: Optimization of Reinforced Concrete Retaining Walls Using Ant Colony Method, ISGSR 2011—Vogt, © 2011 Bundesanstalt für Wasserbau ISBN 978-3-939230-01-4 (2011)

    Google Scholar 

  37. Chakraborty S., Das S., Gupta S., Ghosh S.: A critical review of IS: 1893 (Part 3) (2014), International Geotechnical Engineering Conference on Sustainability in Geotechnical Engineering Practices and Related Urban Issues, September, pp. 23–24, Mumbai, India (2016)

    Google Scholar 

  38. Sharma, R.P., Ghosh, S.: Pseudo static seismic active response of retaining wall supporting c − φ backfill. Electr. J. Geotech. Eng. (EJGE) 15, 533 (2010)

    Google Scholar 

  39. Smuc, T.: Sensitivity of differential evolution algorithm to value of control parameters. In: Proceedings of the International Conference on Artificial Intelligence, pp. 108–1093 (2002)

    Google Scholar 

  40. Smuc, T.: Improving convergence properties of the differential evolution algorithm. In: Proceedings of MENDEL 2002, 8th International Mendel Conference on Soft Computing, pp. 80–86 (2002)

    Google Scholar 

  41. Gong, W.Y., Cai, Z.H.: Differential evolution with ranking based mutation operators. IEEE Trans. Cybern. 43(6), 2066–2081 (2013)

    Article  Google Scholar 

  42. Wang, L., Zhong, Y., Yin, Y., Zhao, W., Wang, B., Xu, Y.: A hybrid backtracking search optimization algorithm with differential evolution. Mathem. Prob. Eng. vol. 2015, Article ID 769245. http://dx.doi.org/10.1155/2015/769245,(2015)

  43. Gämperle, R., Müller, S.D., Koumoutsakos, P.: A parameter study for differential evolution. Adv. Intell. Syst. Fuzzy Syst. Evol. Comput. 10, 293–298 (2002)

    Google Scholar 

  44. Ronkkonen, J., Kukkonen, S., Price, K.V.: Real-parameter optimization with differential evolution. Proc. IEEE CEC 1, 506–513 (2005)

    Google Scholar 

  45. Zaharie, D.: Influence of crossover on the behavior of differential evolution algorithms. Appl. Soft Comput. 9(3), 1126–1138 (2009)

    Article  Google Scholar 

  46. Zhang, C., Ning, J., Lu, S., Ouyang, D., Ding, T.: A novel hybrid differential evolution and particle swarm optimization algorithm for unconstrained optimization. Oper. Res. Lett. 37, 117–122 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  47. Storn, R.: On the usage of differential evolution for function optimization. In: Biennial Conference of the North American Fuzzy Information Processing Society (NAFIPS), IEEE, Berkeley, pp. 519–523 (1996)

    Google Scholar 

  48. Lampinen, J., Zelinka, I.: On stagnation of the differential evolution algorithm. In: Proceedings of MENDEL 2000, 6th International Mendel Conference on Soft Computing, pp. 76–83 (2000)

    Google Scholar 

  49. Mononobe, N., Matsuo, H.: On the determination of earth pressure during earthquakes. Proc. World Eng. Conf. 9, 176 (1929)

    Google Scholar 

  50. Okabe, S.: General theory of earth pressure. J. Jpn. Soc. Civ. Eng. 12(1) (1926)

    Google Scholar 

  51. Seed, H.B., Whitman, R.V.: Design of Earth Retaining Structures for Dynamic Loads, Lateral stresses in the ground and design of earth retaining structures, pp. 103–107. ASCE, New York (1970)

    Google Scholar 

  52. Ghosh, S., Dey, G.N., Datta, B.: pseudostatic analysis of rigid retaining wall for dynamic active earth pressure. In: 12th International Conference of International Association for Computer Methods and Advances in Geomechanics, Goa, India, pp. 4122–4131 (2008)

    Google Scholar 

  53. Liang, J.J., Qu, B.Y., Suganthan, P.N.: Problem definitions and evaluation criteria for the CEC 2014. Special Session and Competition on Single Objective Real Parameter Numerical Optimization. Technical Report 11, Computational Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Technical Report, Nanyang Technological University, Singapore, December (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Apu Kumar Saha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nama, S., Saha, A.K., Saha, A. (2021). The hDEBSA Global Optimization Method: A Comparative Study on CEC2014 Test Function and Application to Geotechnical Problem. In: Bhoi, A., Mallick, P., Liu, CM., Balas, V. (eds) Bio-inspired Neurocomputing. Studies in Computational Intelligence, vol 903. Springer, Singapore. https://doi.org/10.1007/978-981-15-5495-7_12

Download citation

Publish with us

Policies and ethics