Skip to main content

Impact of Aligned and Non-aligned MHD Casson Fluid with Inclined Outer Velocity Past a Stretching Sheet

  • Conference paper
  • First Online:
Proceedings of International Conference on Trends in Computational and Cognitive Engineering

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1169))

  • 185 Accesses

Abstract

Consequences of aligned and non-aligned magnetic field combined with inclined outer velocity in a Casson fluid towards a stretching surface have been analysed numerically. The reduced mathematical equation of heat and flow transportation has been solved using appropriate similarity transformation. The computed outcomes of the moulded equations have been figure out by the Runge–Kutta Fehlberg method with shooting technique. Numerical conclusions for various fluid parameters like outer velocity, aligned angle of magnetism, magnetic and Casson fluid have been investigated. The behaviours of emerging fluid parameters on heat and flow are interpreted graphically. Endorsement of the current investigation is accessible by the correlated current outcomes with the extant outcomes in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

l :

Aligned angle parameter

\(R, b, n, m, k, \alpha \) :

Constant

\(\beta \) :

Casson parameter

xy:

Cartesian coordinates

\(\theta \) :

Dimensionless temperature profile

\(\sigma \) :

Electrical conductivity

\(\rho \) :

Fluid density

T :

Fluid temperature

Q :

Heat generation

\(\gamma \) :

Impinging/striking angle

\(\nu \) :

Kinematic viscosity

\(Nu_{x}\) :

Local Nusselt number

M :

Magnetic parameter

MHD:

Magneto hydrodynamic

\(B_{o}\) :

Magnetic field strength

\(f_{a}\) :

Normal component of flow

\(\lambda \) :

Outer velocity parameter

P :

Pressure

Pr :

Prandtl number

\(C_{P}\) :

Specific heat at constant pressure

\(\psi \) :

Stream function

\(C_{f}\) :

Skin friction coefficient

K :

Thermal conductivity

\(g_{a}, h_{a}\) :

Tangential component of flow

\(T_{w}\) :

Temperature at surface

\(T_{\infty }\) :

Uniform ambient temperature (K)

uv:

Velocity component along x- and y-axes

\(\tau _{w}\) :

Wall shear stress

References

  1. Cortell R (2005) A note on magnetohydrodynamic flow of a power-law fluid over a stretching sheet. Appl Math Comput 168:557–566. https://doi.org/10.1016/j.amc.2004.09.046

    Article  MathSciNet  MATH  Google Scholar 

  2. Reddy JVR, Sugunamma V, Sandeep N (2018) Impact of soret and dufour numbers on MHD casson fluid flow past an exponentially stretching sheet with non-uniform heat source/sink. Defect Diffus Forum 388:14–27. https://doi.org/10.4028/www.scientific.net/DDF.388.14

    Article  Google Scholar 

  3. Poply V, Singh P, Yadav AK (2015) A study of temperature-dependent fluid properties on MHD free stream flow and heat transfer over a non-linearly stretching sheet. Procedia Eng 127:391–397. https://doi.org/10.1016/j.proeng.2015.11.386

    Article  Google Scholar 

  4. Singh P, Tomer NS, Kumar S, Sinha D (2011) Effect of radiation and porosity parameter on magnetohydrodynamics flow due to stretching sheet in porous media. Thermal Sci 15:517–526

    Article  Google Scholar 

  5. Sulochana C, Sandeep N, Sugunamma V, Rushi Kumar B (2016) Aligned magnetic field and cross-diffusion effects of a nanofluid over an exponentially stretching surface in porous medium. Appl Nanosci 6:737–746 https://doi.org/10.1007/s13204-015-0475-x

  6. Mahapatra TR, Gupta AS (2001) Magnetohydrodynamic stagnation-point flow towards a stretching sheet. Acta Mechanica 152:191–196. https://doi.org/10.1007/BF01176953

    Article  MATH  Google Scholar 

  7. Lok YY, Merkin JH, Pop I (2015) MHD oblique stagnation-point flow towards a stretching/shrinking surface. Meccanica 50:2949–2961. https://doi.org/10.1007/s11012-015-0188-y

    Article  MathSciNet  MATH  Google Scholar 

  8. Singh P, Kumar A, Tomer NS, Sinha D (2013) Analysis of porosity effects on unsteady stretching permeable sheet. Walailak J Sci Technol (WJST) 11:611–620

    Google Scholar 

  9. Dorrepaal JM (2000) Is two-dimensional oblique stagnation-point flow unique. Can Appl Math Q 8:61–66

    Article  MathSciNet  Google Scholar 

  10. Lok YY, Amin N, Pop I (2006) Non-orthogonal stagnation point flow towards a stretching sheet. Int J Non-Linear Mech 41:622–627. https://doi.org/10.1016/j.ijnonlinmec.2006.03.002

    Article  Google Scholar 

  11. Reza M, Gupta AS (2005) Steady two-dimensional oblique stagnation-point flow towards a stretching surface. Fluid Dyn Res 37:334–340. https://doi.org/10.1016/j.fluiddyn.2005.07.001

    Article  MathSciNet  MATH  Google Scholar 

  12. Ganji DD et al (2014) Analytical and numerical simulation investigation in effects of radiation and porosity on a non-orthogonal stagnation-point flow towards a stretching sheet. Indian J Pure Appl Math 45:415–432. https://doi.org/10.1007/s13226-014-0071-x

    Article  MathSciNet  MATH  Google Scholar 

  13. Singh P, Tomer NS, Kumar S, Sinha D (2010) Mhd oblique stagnation-point flow towards a stretching sheet with heat transfer. Int J Appl Math Mechan 6:94–111

    Google Scholar 

  14. Mustafa M, Hayat T, Ioan P, Hendi A (2012) Stagnation-point flow and heat transfer of a casson fluid towards a stretching sheet. Zeitschrift für Naturforschung A 67:70–76. https://doi.org/10.5560/zna.2011-0057

    Article  Google Scholar 

  15. Bhattacharyya K (2013) MHD stagnation-point flow of casson fluid and heat transfer over a stretching sheet with thermal radiation. J Thermodyn 2013:1–9. https://doi.org/10.1155/2013/169674

    Article  Google Scholar 

  16. Megahed AM (2015) Effect of slip velocity on Casson thin film flow and heat transfer due to unsteady stretching sheet in presence of variable heat flux and viscous dissipation. Appl Mathem Mech 36:1273–1284. https://doi.org/10.1007/s10483-015-1983-9

    Article  MathSciNet  MATH  Google Scholar 

  17. Abd El-Aziz M, Afify AA (2018) Influences of slip velocity and induced magnetic field on MHD stagnation-point flow and heat transfer of casson fluid over a stretching sheet. Math Problems Eng 1–11 https://doi.org/10.1155/2018/9402836

  18. Raza J (2019) Thermal radiation and slip effects on magnetohydrodynamic (MHD) stagnation point flow of Casson fluid over a convective stretching sheet. Propul Power Res 8:138–146. https://doi.org/10.1016/j.jppr.2019.01.004

    Article  Google Scholar 

  19. Arifin NS et al (2017) Aligned magnetic field of two-phase mixed convection flow in dusty Casson fluid over a stretching sheet with Newtonian heating. J Physs: Conf Ser 890:012001. https://doi.org/10.1088/1742-6596/890/1/012001

    Article  Google Scholar 

  20. Kalaivanan R et al (2015) Effects of aligned magnetic field on slip flow of casson fluid over a stretching sheet. Procedia Eng 127:531–538. https://doi.org/10.1016/j.proeng.2015.11.341

    Article  Google Scholar 

  21. Abdul Hakeem AK, Renuka P, Vishnu Ganesh N, Kalaivanan R, Ganga B (2016) Influence of inclined Lorentz forces on boundary layer flow of Casson fluid over an impermeable stretching sheet with heat transfer. J Magnetism Magn Mater 401:354–361 https://doi.org/10.1016/j.jmmm.2015.10.026

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renu Devi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Devi, R., Poply, V., Manimala (2021). Impact of Aligned and Non-aligned MHD Casson Fluid with Inclined Outer Velocity Past a Stretching Sheet. In: Singh, P., Gupta, R.K., Ray, K., Bandyopadhyay, A. (eds) Proceedings of International Conference on Trends in Computational and Cognitive Engineering. Advances in Intelligent Systems and Computing, vol 1169. Springer, Singapore. https://doi.org/10.1007/978-981-15-5414-8_15

Download citation

Publish with us

Policies and ethics