Skip to main content

Algorithms for the Metric Dimension of a Simple Graph

  • Conference paper
  • First Online:
Data Science and Security

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 132))

  • 638 Accesses

Abstract

Let G = (V, E) be a connected, simple graph with n vertices and m edges. Let v1, v2 \(\in\) V, d(v1, v2) is the number of edges in the shortest path from v1 to v2. A vertex v is said to distinguish two vertices x and y if d(v, x) and d(v, y) are different. D(v) as the set of all vertex pairs which are distinguished by v. A subset of V, S is a metric generator of the graph G if every pair of vertices from V is distinguished by some element of S. Trivially, the whole vertex set V is a metric generator of G. A metric generator with minimum cardinality is called a metric basis of the graph G. The cardinality of metric basis is called the metric dimension of G. In this paper, we develop algorithms to find the metric dimension and a metric basis of a simple graph. These algorithms have the worst-case complexity of O(nm).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Brigham RC, Chartrand G, Dutton RD, Zhang P (2003) Resolving domination in graphs. Math Bohem 128(1):25–36

    Article  MathSciNet  Google Scholar 

  2. Cáceres J, Hernando C, Mora M, Pelayo IM, Puertas ML, Seara C, Wood DR (2007) On the metric dimension of cartesian product of graphs. SIAM J Discret Math 21(2):423–441

    Google Scholar 

  3. Estrada-Moreno A, Rodríguez-Velázquez JA, Yero IG (2013) k-metric dimension of graphs. arXiv:1312.6840 [math.CO]

  4. Chartrand G, Eroh L, Johnson MA, Oellermann OR (2000) Resolvability in graphs and the metric dimension of a graph. Discrete Appl Math 105(1–3):99–113

    Article  MathSciNet  Google Scholar 

  5. Chartrand G, Poisson C, Zhang P (2000) Resolvability and the upper dimension of graphs. Comput Math Appl 39(12):19–28

    Article  MathSciNet  Google Scholar 

  6. Chartrand G, Salehi E, Zhang P (2000) The partition dimension of a graph. Aequ Math 59(1–2):45–54

    Article  MathSciNet  Google Scholar 

  7. Fehr M, Gosselin S, Oellermann OR (2006) The partition dimension of cayley digraphs. Aequ Math 71(1–2):1–18

    Article  MathSciNet  Google Scholar 

  8. Harary F, Melter RA (1976) On the metric dimension of a graph. Ars Comb 2:191–195

    MATH  Google Scholar 

  9. Haynes TW, Henning MA, Howard J (2006) Locating and total dominating sets in trees. Discrete Appl Math 154(8):1293–1300

    Article  MathSciNet  Google Scholar 

  10. Johnson M (1993) Structure-activity maps for visualizing the graph variables arising in drug design. J Biopharm Stat 3(2):203–236, pMID: 8220404

    Google Scholar 

  11. Johnson MA (1998) Browsable structure-activity datasets. In: Carbó-Dorca R, Mezey P (eds) Advances in molecular similarity. JAI Press Inc, Stamford, Connecticut, pp 153–170

    Google Scholar 

  12. Khuller S, Raghavachari B, Rosenfeld A (1996) Landmarks in graphs. Discrete Appl Math 70:217–229

    Article  MathSciNet  Google Scholar 

  13. Kuziak D, Yero IG, Rodríguez-Velázquez JA (2013) On the strong metric dimension of corona product graphs and join graphs. Discrete Appl Math 161(7–8):1022–1027

    Google Scholar 

  14. Oellermann OR, Peters-Fransen J (2007) The strong metric dimension of graphs and digraphs. Discrete Appl Math 155(3):356–364

    Article  MathSciNet  Google Scholar 

  15. Okamoto F, Phinezy B, Zhang P (2010) The local metric dimension of a graph. Math Bohem 135(3):239–255

    Article  MathSciNet  Google Scholar 

  16. Saenpholphat V, Zhang P (2004) Conditional resolvability in graphs: a survey. Int J Math Math Sci 2004(38):1997–2017

    Article  MathSciNet  Google Scholar 

  17. Sebő A, Tannier E (2004) On metric generators of graphs. Math Oper Res 29(2):383–393

    Google Scholar 

  18. Slater PJ (1975) Leaves of trees. Congr Numer 14:549–559

    MathSciNet  MATH  Google Scholar 

  19. Slater PJ (1988) Dominating and reference sets in a graph. J Math Phys Sci 22(4):445–455

    MathSciNet  MATH  Google Scholar 

  20. Tomescu I (2008) Discrepancies between metric dimension and partition dimension of a connected graph. Discrete Appl Math 308(22):5026–5031

    MathSciNet  MATH  Google Scholar 

  21. Yero IG, Kuziak D, Rodríguez-Velázquez JA (2011) On the metric dimension of corona product graphs. Comput Math Appl 61(9):2793–2798

    Google Scholar 

  22. Yero IG, Rodríguez-Velázquez JA (2010) A note on the partition dimension of cartesian product graphs. Appl Math Comput 217(7):3571–3574

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Varghese Kureethara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chelladurai, X., Kureethara, J.V. (2021). Algorithms for the Metric Dimension of a Simple Graph. In: Jat, D.S., Shukla, S., Unal, A., Mishra, D.K. (eds) Data Science and Security. Lecture Notes in Networks and Systems, vol 132. Springer, Singapore. https://doi.org/10.1007/978-981-15-5309-7_10

Download citation

Publish with us

Policies and ethics