Skip to main content

Deep Learning Based Hazard Label Object Detection for Lithium-ion Batteries Using Synthetic and Real Data

  • Chapter
  • First Online:
Deep Learning Applications

Abstract

Changing transport regulations for intralogistics tasks leads to the need for object detection of hazard labels on parcels in high-resolution grayscale images. For this reason, this paper compares different Convolutional Neural Network (CNN) based object detection systems. Specifically, a YOLO implementation known as Darkflow as well as a self-developed Object Detection Pipeline (ODP) based on the Inception V3 model is considered. Different datasets consisting of synthetic and real images are created to set up the necessary training and evaluation environments. To check the robustness of the systems under real operation conditions, they are assessed by the mean Average Precision (mAP) metric. Moreover, results are evaluated to answer various questions like the impact of synthetic data during training, or the highest quality level of the systems. The YOLO models showed a higher mAP and a much higher detection speed than the MSER Object Detection Pipeline at the cost of higher training times. The mixed training data set with synthetic and real data showed a slightly reduced mAP on the validation set compared to just real data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Darkflow, URL: https://github.com/thtrieu/darkflow (Retrieved: 2019-06-19).

  2. 2.

    Nathan Silberman and Sergio Guadarrama, TensorFlow-Slim image classification model library, URL: https://github.com/tensorflow/models/tree/master/research/slim (Retrieved: 2019-06-19).

References

  1. A. Canziani, A. Paszke, E. Culurciello, An analysis of deep neural network models for practical applications (2016)

    Google Scholar 

  2. S. Cesare, Y. Xiang, Software Similarity and Classification (Springer, Berlin, 2012), p. 67

    Google Scholar 

  3. A. Chachra, P. Mehndiratta, M. Gupta, Sentiment analysis of text using deep convolution neural networks, in 10th International Conference on Contemporary Computing (IC3) (2017), pp. 1–6

    Google Scholar 

  4. Y.H. Chang, P.L. Chung, H.W. Lin, Deep learning for object identification in ROS-based mobile robots, in IEEE International Conference on Applied System Invention (ICASI) (2018), pp. 66–69

    Google Scholar 

  5. M. Everingham, S.M.A. Eslami, L.V. Gool, C.K.I. Williams, J. Winn, A. Zisserman, The pascal visual object classes challenge: a retrospective. Int. J. Comput. Vis. (IJCV) 111(1), 98–136 (2015)

    Article  Google Scholar 

  6. Y. Fan, X. Lu, D. Li, Y. Liu, Video-based emotion recognition using CNN-RNN and C3D hybrid networks, in 18th ACM International Conference on Multimodal Interaction, ICMI ’16 (2016), pp. 445–450

    Google Scholar 

  7. R. Girshick, J. Donahue, T. Darrell, J. Malik, Rich feature hierarchies for accurate object detection and semantic segmentation, in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2014), pp. 580–587

    Google Scholar 

  8. I. Goodfellow, Y. Bengio, A. Courville, Deep Learning (MIT Press, Cambridge, 2016)

    MATH  Google Scholar 

  9. I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, Y. Bengio, Generative adversarial nets. Adv. Neural Inf. Process. Syst. 27, 2672–2680 (2014)

    Google Scholar 

  10. R. Grzeszick, J.M. Lenk, F. Moya Rueda, G.A. Fink, S. Feldhorst, M. ten Hompel, Deep neural network based human activity recognition for the order picking process, in 4th International Workshop on Sensor-based Activity Recognition and Interaction, iWOAR ’17 (2017) pp. 1–6

    Google Scholar 

  11. A. Gupta, A. Vedaldi, A. Zisserman, Synthetic data for text localisation in natural images, in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016), pp. 2315–2324

    Google Scholar 

  12. M. Himstedt, E. Maehle, Online semantic mapping of logistic environments using RGB-D cameras. Int. J. Adv. Robot. Syst. 14(4), 113 (2017)

    Article  Google Scholar 

  13. R. Hou, C. Chen, M. Shah. Tube convolutional neural network (T-CNN) for action detection in videos, in IEEE International Conference on Computer Vision (ICCV) (2017), pp. 5823–5832

    Google Scholar 

  14. IATA DGR, 2017 Lithium Battery Guidance Document. https://www.iata.org/whatwedo/cargo/dgr/Documents/lithium-battery-guidance-document-2017-en.pdf (2016) (Retrieved: 2019-06-19)

  15. H. Jo, Y. H. Na, J.B. Song, Data augmentation using synthesized images for object detection, in 17th International Conference on Control, Automation and Systems (ICCAS) (2017), pp. 1035–1038

    Google Scholar 

  16. T.A. Le, A.G. Baydin, R. Zinkov, F. Wood, Using synthetic data to train neural networks is model-based reasoning, in International Joint Conference on Neural Networks (IJCNN) (2017), pp. 3514–3521

    Google Scholar 

  17. A.R. Ludwig, H. Piorek, A.H. Kelch, D. Rex, S. Koitka, C.M. Friedrich, Improving model performance for plant image classification with filtered noisy images, in Working Notes of CLEF 2017 - Conference and Labs of the Evaluation Forum, vol. 1866 (2017)

    Google Scholar 

  18. J. Matas, O. Chum, M. Urban, T. Pajdla, Robust wide baseline stereo from maximally stable extremal regions, in British Machine Vision Conference (BMVC 2002), vol. 22 (BMVA Press, 2002), pp. 384–393

    Google Scholar 

  19. Y. Mednikov, S. Nehemia, B. Zheng, O. Benzaquen, D. Lederman, Transfer representation learning using inception-V3 for the detection of masses in mammography, in 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (2018), pp. 2587–2590

    Google Scholar 

  20. A. Mikołajczyk, M. Grochowski, Data augmentation for improving deep learning in image classification problem, in International Interdisciplinary PhD Workshop (IIPhDW) (2018), pp. 117–122

    Google Scholar 

  21. Y. Nagaoka, T. Miyazaki, Y. Sugaya, S. Omachi, Text detection by faster R-CNN with multiple region proposal networks, in 14th IAPR International Conference on Document Analysis and Recognition (ICDAR), vol. 06 (2017), pp. 15–20

    Google Scholar 

  22. K. Noda, Y. Yamaguchi, K. Nakadai, Hiroshi G. Okuno, T. Ogata, Audio-visual speech recognition using deep learning. Appl. Intell. 42(4), 722–737 (2015)

    Google Scholar 

  23. G. Nowacki, C. Krysiuk, R. Kopczewski, Dangerous goods transport problems in the European Union and Poland. TransNav, Int. J. Mar. Navig. Saf. Sea Transp. 10(1), 143–150 (2016)

    Article  Google Scholar 

  24. S.J. Pan, Q. Yang, A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2010)

    Article  Google Scholar 

  25. D. Pande, C. Sharma, V. Upadhyaya, Object detection and path finding using monocular vision, in International Conference on Signal Propagation and Computer Technology (ICSPCT) (2014), pp. 376–379

    Google Scholar 

  26. P. Ramakrishna, E. Hassan, R. Hebbalaguppe, M. Sharma, G. Gupta, L. Vig, G. Sharma, G. Shroff, An ar inspection framework: feasibility study with multiple ar devices, in IEEE International Symposium on Mixed and Augmented Reality (ISMAR-Adjunct) (2016), pp. 221–226

    Google Scholar 

  27. J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You only look once: unified, real-time object detection, in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016), pp. 779–788

    Google Scholar 

  28. J. Redmon, A. Farhadi, YOLO9000: better, faster, stronger, in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017), pp. 6517–6525

    Google Scholar 

  29. S. Ren, K. He, R. Girshick, J. Sun, Faster R-CNN: towards real-time object detection with region proposal networks, in Advances in Neural Information Processing Systems 28 (NIPS) (2015), pp. 91–99

    Google Scholar 

  30. R. Rothe, M. Guillaumin, L. Van Gool, Non-maximum suppression for object detection by passing messages between windows, in Computer Vision – ACCV 2014 (Springer International Publishing, 2015), pp. 290–306

    Google Scholar 

  31. O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A.C. Berg, F. Li, ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. (IJCV) 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  32. Y. Sawada, Y. Sato, T. Nakada, S. Yamaguchi, K. Ujimoto, N. Hayashi, Improvement in classification performance based on target vector modification for all-transfer deep learning. Appl. Sci. 9(1) (2019)

    Google Scholar 

  33. M. Schwarze, A. Milan, A.S. Periyasamy, S. Behnke, RGB-D object detection and semantic segmentation for autonomous manipulation in clutter. Int. J. Robot. Res. 37(4–5), 437–451 (2017)

    Google Scholar 

  34. C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, Z. Wojna, Rethinking the inception architecture for computer vision, in IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016), pp. 2818–2826

    Google Scholar 

  35. S. Tsutsui, D. Crandall, A data driven approach for compound figure separation using convolutional neural networks, in The IAPR International Conference on Document Analysis and Recognition (ICDAR) (2017)

    Google Scholar 

  36. J. Wang, S. Liu, Q. Yang, Transfer learning for air traffic control LVCSR system, in Second International Conference on Mechanical, Control and Computer Engineering (ICMCCE) (2017), pp. 169–172

    Google Scholar 

  37. M.A. Wani, F.A. Bhat, S. Afzal, A. Khan, Advances in Deep Learning (Springer, Berlin, 2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph M. Friedrich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schweigert, A., Blesing, C., Friedrich, C.M. (2020). Deep Learning Based Hazard Label Object Detection for Lithium-ion Batteries Using Synthetic and Real Data. In: Wani, M., Kantardzic, M., Sayed-Mouchaweh, M. (eds) Deep Learning Applications. Advances in Intelligent Systems and Computing, vol 1098. Springer, Singapore. https://doi.org/10.1007/978-981-15-1816-4_8

Download citation

Publish with us

Policies and ethics