Skip to main content

Ensemble of Deep Learning Approaches for ATC Classification

  • Conference paper
  • First Online:
Smart Intelligent Computing and Applications

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 159))

Abstract

Anatomical Therapeutic Chemical (ATC) classification of unknown compounds is essential for drug development and research. In this paper, we propose a multi-label classifier system for ATC prediction based on convolutional neural networks (CNNs) and long short-term memory (LSTM) networks. The CNN approach extracts a 1D feature vector from the compounds utilizing information about their chemical–chemical interaction and structural and fingerprint similarities to other compounds belonging to the ATC classes. The 1D vector is then reshaped into a 2D matrix. A CNN is trained on the matrix and used to extract new features. LSTM is trained on the 1D vector and likewise used to extract features. These features are then trained on two general-purpose classifiers designed for multi-label classification, and results are fused. Rigorous experimental evaluation demonstrates the superiority of our method compared to other state-of-the-art approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Pitts, R.C.: Reconsidering the concept of behavioral mechanisms of drug action. J. Exp. Anal. Behav. 101, 422–441 (2014)

    Article  Google Scholar 

  2. Chen, L.: Predicting anatomical therapeutic chemical (ATC) classification of drugs by integrating chemical-chemical interactions and similarities. PLoS ONE 7, (2012)

    Article  Google Scholar 

  3. Dunkel, M., Günther, S., Ahmed, J., Wittig, B., Preissner, R.: SuperPred: update on drug classification and target prediction. Nucleic Acids Res. 36, W55–W59 (2008)

    Article  Google Scholar 

  4. Wu, L., Ai, N., Liu, Y., Fan, X.: Relating anatomical therapeutic indications by the ensemble similarity of drug sets. J. Chem. Inf. Model. 53, 2154–2160 (2013)

    Article  Google Scholar 

  5. Ogata, H., Goto, S., Sato, K., Fujibuchi, W., Bono, H., Kanehisa, M.: KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 27, 29–34 (1999)

    Article  Google Scholar 

  6. Cheng, X., Zhao, S.-G., Xiao, X., Chou, K.-C.: iATC-mISF: a multi-label classifier for predicting the classes of anatomical therapeutic chemicals. Bioinformatics 33, 341–346 (2017)

    Article  Google Scholar 

  7. Cheng, X., Zhao, S.-G., Xiao, X., Chou, K.-C.: iATC-mHyb: a hybrid multi-label classifier for predicting the classification of anatomical therapeutic chemicals. Oncotarget 8, 58494–58503 (2017)

    Google Scholar 

  8. Nanni, L., Brahnam, S.: Multi-label classifier based on histogram of gradients for predicting the anatomical therapeutic chemical class/classes of a given compound. Bioinformatics 33, 2837–2841 (2017)

    Article  Google Scholar 

  9. Lumini, A., Nanni, L.: Convolutional neural networks for ATC classification. Curr. Pharm. Des. (In Press)

    Google Scholar 

  10. Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Networks 61, 85–117 (2015)

    Article  Google Scholar 

  11. Nanni, L., Ghidoni, S., Brahnam, S.: Handcrafted versus non-handcrafted features for computer vision classification. Pattern Recognit 71, 158–172 (2017)

    Article  Google Scholar 

  12. Chan, T.-H., Jia, K., Gao, S., Lu, J., Zeng, Z., Ma, Y.: Pcanet: a simple deep learning baseline for image classification? IEEE Trans. Image Process. 24, 5017–5032 (2015)

    Article  MathSciNet  Google Scholar 

  13. Nanni, L., Ghidoni, S.: How could a subcellular image, or a painting by Van Gogh, be similar to a great white shark or to a pizza? Pattern Recognit Lett 85, 1–88 (2017)

    Article  Google Scholar 

  14. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9, 1735–1780 (1997)

    Article  Google Scholar 

  15. Nanni, L., Brahnam, S., Lumini, A.: Matrix representation in pattern classification. Expert Syst. Appl. 39(3), 3031–3036 (2012)

    Article  Google Scholar 

  16. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2323 (1998)

    Article  Google Scholar 

  17. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing System, pp. 1097–1105. Curran Associates Inc, Red Hook, NY (2012)

    Google Scholar 

  18. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. Cornell University (2014)

    Google Scholar 

  19. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  20. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778. IEEE, Las Vegas, NV (2016)

    Google Scholar 

  21. Yosinski, J., Clune, J., Bengio, Y., Lipson, H.: How transferable are features in deep neural networks? Cornell University (2014)

    Google Scholar 

  22. Zhang, M.-L., Wu, L.: Lift: multi-label learning with label-specific features. IEEE Trans. Pattern Anal. Mach Intell 37, 107–120 (2015)

    Article  Google Scholar 

  23. Kimura, K., Sun, L., Kudo, M.: MLC toolbox: A MATLAB/OCTAVE library for multi-label classification. ArXiv arXiv:1704.02592 (2017)

  24. Chou, K.C.: Some remarks on predicting multi-label attributes in molecular biosystems. Mol. BioSyst. 9, 10922–11100 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the support that NVIDIA provided us through the GPU Grant Program. We used a donated TitanX GPU to train the CNNs used in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheryl Brahnam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nanni, L., Brahnam, S., Lumini, A. (2020). Ensemble of Deep Learning Approaches for ATC Classification. In: Satapathy, S., Bhateja, V., Mohanty, J., Udgata, S. (eds) Smart Intelligent Computing and Applications . Smart Innovation, Systems and Technologies, vol 159. Springer, Singapore. https://doi.org/10.1007/978-981-13-9282-5_12

Download citation

Publish with us

Policies and ethics