Skip to main content

Introduction

  • Chapter
  • First Online:
Theory of Graded Consequence

Part of the book series: Logic in Asia: Studia Logica Library ((LIAA))

  • 111 Accesses

Abstract

In this chapter, the objective of this work, which is to introduce many-valuedness to meta-logical notions like consequence, consistency/inconsistency, tautologihood, etc. involved in a logical discourse, is stated. To arrive at this end the issues that have been sailed through are (i) three levels inherent in a logic discourse, (ii) from many-valued logics, fuzzy logics to graded consequence: a brief overview, (iii) a general discussion on uncertainty and vagueness, (iv) notion of consequence in classical logic and (v) finally some motivations for lifting many-valuedness to the meta-level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arruda, A.I.: Aspects of the historical development of paraconsistent logic. In: Priest, G., Routley, R., Norman, J. (eds.) Paraconsistent Logic: Essays on the Inconsistent, pp. 99–129. Philosophia Verlag, München, Handen, Wien (1989)

    Google Scholar 

  • Bacon, A.: Non-classical metatheory for non-classical logics. J. Philos. Log. 42, 335–355 (2012)

    Article  Google Scholar 

  • Bankova, D., Coecke, B., Lewis, M., Marsden, M.: Graded Entailment for Compositional Distributional Semantics (2016). arXiv:1601.04908

  • Basu, S.: A study in logical and philosophical implications of graded consequence in many-valued systems. Ph.D. thesis, Jadavpur University (2003)

    Google Scholar 

  • Bertossi, L., Hunter, A., Schaub, T.: Introduction to inconsistency tolerance. In: Bertossi, L., Hunter, A., Schaub, T. (eds.) Inconsistency Tolerance. LNCS, vol. 3300, pp. 1–14. Springer, Berlin (2005)

    Chapter  Google Scholar 

  • Bolc, L., Borowik, P.: Many-valued Logics: Theoretical Foundations. Springer (1992)

    Google Scholar 

  • Brewka, G.: Nonmonotonic Reasoning: Logical Foundations of Commonsense. Cambridge University Press (1991)

    Google Scholar 

  • Bridges, W.: Uncertainty: The Soul of Modeling Probability and Statistics. Springer, New York (2016)

    Google Scholar 

  • Cano, J.E., Moral, S., Verdegay-Lopez, J.F.: Partial inconsistency of probability envelopes. Fuzzy Sets Syst. 52, 201–216 (1992)

    Article  Google Scholar 

  • Chakraborty, M.K.: On some issues in the foundation of rough sets: the problem of definitions. Fundam. Inform. (2016)

    Google Scholar 

  • Chakraborty, M.K.: Use of fuzzy set theory in introducing graded consequence in multiple valued logic. In: Gupta, M.M., Yamakawa, T. (eds.) Fuzzy Logic in Knowledge-Based Systems, Decision and Control, pp. 247–257. Elsevier Science Publishers, (B.V) North Holland (1988)

    Google Scholar 

  • Chakraborty, M.K., Banerjee, M.: Rough logic with rough quantifiers. Bull. Pol. Acad. Sc. Math. 41(4), 305–315 (1993)

    Google Scholar 

  • Chang, C.C.: A new proof of the completeness of the Lukasiewicz axioms. Transactions 8874–8880 (1959)

    Google Scholar 

  • Chang, C.C.: Algebraic analysis of many-valued logics. Trans. Am. Math. Soc. 88, 476–490 (1958)

    Article  Google Scholar 

  • Church, A.: Introduction to Mathematical Logic, vol. 1. Princeton University Press, N.J. (1956)

    Google Scholar 

  • Cibattoni, A., et al.: Formal approaches to rule-based systems in medicine: the case of CADIAG-2. Int. J. Approx. Reason. 54, 132–148 (2013)

    Article  Google Scholar 

  • Cleave, J.P.: A Study of Logics. Clarendon Press, Oxford (1991)

    Google Scholar 

  • Dempster, A.P.: Upper and lower probabilities induced by a multivalued mapping. Ann. Math. Stat. 38(2), 325–339 (1967)

    Article  Google Scholar 

  • Diaconescu, R.: Graded consequence: an institution theoretic study. Soft Comput. 18, 1247–1267 (2014)

    Article  Google Scholar 

  • Dubois, D.: Possibility theory and statistical reasoning. Comput. Stat. Data Anal. 51(1), 47–69 (2006)

    Article  Google Scholar 

  • Dubois, D., Prade, H.: Possibilistic logic, a retrospective and prospective view. Fuzzy Sets Syst. 144(1), 3–23 (2004)

    Article  Google Scholar 

  • Dunn, P.E., et al.: Inconsistency tolerance in wieghted argument systems. In: Decker, K.S., Sichman, J.S., Sierra, C., Castelfranchi, C. (eds.) Proceedings of 8th International Conference on Autonomous Agents and Multiagent Systems (AAMAS2009), pp. 851–858. Budapest, Hungary (2009)

    Google Scholar 

  • Esteva, F., Rodriguez, R., Godo, L., Vetterlein, T.: Logics for approximate and strong entailments. Fuzzy Sets Syst. 197, 59–70 (2012)

    Article  Google Scholar 

  • Feferman, A.B., Feferman, S.: Alfred Tarski: Life and Logic. Cambridge University Press (2004)

    Google Scholar 

  • Field, H.: Indeterminacy, degree of belief, and excluded middle. Nous 34(1), 1–30 (2000)

    Article  Google Scholar 

  • Fine, K.: Vagueness, truth and logic. Synthese 30, 265–300 (1975)

    Article  Google Scholar 

  • Font, J.M., Jansana, R., Pigozzi, D.: A survey of abstract algebraic logic. Stud. Log. 74, 13–97 (2003)

    Article  Google Scholar 

  • Gaifman, H.: Vagueness, tolerance and contextual logic. Synthese. 174(1), 5–46 (2001)

    Article  Google Scholar 

  • Ghosh, S., Chakraborty, M.K.: Non-monotonic proof systems: algebraic foundations. Fundam. Inform. 59, 39–65 (2004)

    Google Scholar 

  • Godo, L., Rodríguez, R.: Logical approaches to fuzzy similarity-based reasoning: an overview. In: Giacomo Della, R. et al. (eds.) Preferences and Similarities, vol. 504, pp. 75–128. CISM International Centre for Mechanical Sciences (2008)

    Google Scholar 

  • Graff, D.: Shifting sands: an interest-relative theory of vagueness. Philos. Top. 28, 45–81 (2000)

    Article  Google Scholar 

  • Hájek, P.: Metamathematics of Fuzzy Logic. Kluwer Academic Publishers, Dordrecht (1998)

    Book  Google Scholar 

  • Hunter, G.: Metalogic: An Introduction to the Metatheory of Standard First-order Logic. Macmillan Student Edition (1971)

    Google Scholar 

  • Keefe, R.: Theories of Vagueness. Cambridge University Press (2000)

    Google Scholar 

  • Klir, G.J., Yuan, B.: Fuzzy Sets and Fuzzy Logic: Theory and Applications. Prentice Hall of India Private Limited, New Delhi (2006)

    Google Scholar 

  • Kolmogorov, A.N.: Foundations of the theory of probability, 2nd English edition, Translation edited by, Nathan Morrison, Chelsea Publishing Co. New York (1956)

    Google Scholar 

  • Lim, J.: Consistent belief reasoning in the presence of inconsistency, theoretical aspects of reasoning about knowledge. In: Fagin, R. (ed.) Proceedings of the 5th TARK 1994, pp. 80–94 (1994)

    Google Scholar 

  • Liu, B.: Uncertainty Theory: A Branch of Mathematics for Modeling Human Uncertainty. Springer, Berlin (2010)

    Book  Google Scholar 

  • Machina, K.F.: Truth belief and vagueness. J. Philos. Log. 5, 47–78 (1976)

    Article  Google Scholar 

  • Makinson, D.: Bridges from Classical to Nonmonotonic Logic. College Publications (2005)

    Google Scholar 

  • Malinowski, G.: Q-consequence operation. Rep. Math. Log. 24, 49–59 (1990)

    Google Scholar 

  • Malinowski, G.: Many-Valued Logics. Clarendon Press, London (1993)

    Google Scholar 

  • Malinowski, G.: Inferential many-valuedness. In: Wolenski, J. (ed.) Philosophical Logic in Poland, pp. 75–84. Kluwer, Amsterdam (1994)

    Chapter  Google Scholar 

  • Marraud, H.: Razonamiento approximado y grados de consecuencia. Endoxa 10, 55–70 (1998)

    Article  Google Scholar 

  • Minsky, M.: A framework for representation knowledge. In: Brachman, R.J., Levesque, H.J. (eds.) Reading in Knowledge Representation, pp. 246–262. Morgan Kaufman, Los Altos (1985)

    Google Scholar 

  • Minsky, M.: Emotion Machine: Common Sense Thinking, Artificial Intelligence and the Future of the Mind. Simon & Schuster, New York (2006)

    Google Scholar 

  • Minsky, M., Singh, P., Sloman, A.: The St. Thomas common sense symposium: designing architecture for human level intelligence. AI Mag. 25, 113–124 (2004)

    Google Scholar 

  • Muino, D.P.: A graded inference approach based on infinite-valued Lukasiewicz semantics. In: Proceedings of The International Symposium on Multiple-Valued Logic (2010)

    Google Scholar 

  • Muiño, David P.: A consequence relation for graded inference within the frame of infinite-valued Lukasiewicz logic. Fundam. Inform. 123, 77–95 (2013)

    Google Scholar 

  • Ono, H., Komori, Y.: Logics without the contraction rule. J. Symb. Log. 50, 169–201 (1985)

    Article  Google Scholar 

  • Parikh, R.: The problem of vague predicates. In: Cohen, R.S., Wartofsky, M. (eds.) Language, Logic, and Method, pp. 241–261. D. Ridel Publishing Company (1983)

    Google Scholar 

  • Pavelka, J.: On fuzzy logic I, II, III Zeitscher for Math. Logik und Grundlagen d. Math. 25, 45–52, 119–134, 447–464 (1979)

    Google Scholar 

  • Pawlak, Z.: Rough sets. Int. J. Comp. Inf. Sci. 11, 341–356 (1982)

    Article  Google Scholar 

  • Pawlak, Z., Skowron, A.: Rudiments of rough sets. Inf. Sci. 177(1), 3–27 (2007a)

    Article  Google Scholar 

  • Pawlak, Z., Skowron, A.: Rough sets: some extensions. Inf. Sci. 177(1), 28–40 (2007b)

    Article  Google Scholar 

  • Pawlak, Z., Skowron, A.: Rough sets and boolean reasoning. Inf. Sci. 177(1), 41–73 (2007c)

    Article  Google Scholar 

  • Pelta, C.: Deep many-valuedness. Log. Anal. 167–168, 361–371 (1999)

    Google Scholar 

  • Pelta, C.: Wide sets, deep many-valuedness and sorites arguments. Mathw. Soft Comput. 11, 5–11 (2004)

    Google Scholar 

  • Priest, G., Routley, R.: A preliminary history of paraconsistent and dialethic approaches. In: Priest, G., Routley, R., Norman, J. (eds.) Paraconsistent Logic: Essays on the Inconsistent, p. 375. Philosophia Verlag, München, Hamden, Wien (1989)

    Google Scholar 

  • Raffman, D.: Vagueness and context relativity. Philos. Stud. 81, 175–192 (1996)

    Article  Google Scholar 

  • Rescher, N.: A Survey of Many-Valued Logic. McGraw-Hill Book Company, New York (1969)

    Google Scholar 

  • Resher, N.: Many-Valued Logics. McGraw-Hill, New York (1971)

    Google Scholar 

  • Restall, G.: An Introduction to Substructural Logics. Routledge (2000)

    Google Scholar 

  • Sanchez, E. (ed.): Fuzzy Logic and the Semantic Web. Elsevier (2006)

    Google Scholar 

  • Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press (1976)

    Google Scholar 

  • Shapiro, S.: Vagueness in Context. Clarendon Press (2006)

    Google Scholar 

  • She, Y., Ma, L.: On the rough consistency measures of logic theories and approximate reasoning in rough logic. Int. J. Approx. Reason. 55(1), 486–499 (2014)

    Article  Google Scholar 

  • Skowron, A., Suraj, Z.: Rough sets and intelligent systems. Professor Zdzisław Pawlak in memoriam. Series Intelligent Systems Reference Library, vol. 42–43. Springer, Berlin (2013)

    Google Scholar 

  • Smith, J.J.N.: Vagueness and Degrees of Truth. Oxford University Press, Oxford (2008)

    Book  Google Scholar 

  • Tarski, A.: Methodology of deductive sciences. Logics, Semantics, Metamathematics, pp. 60–109 (1956)

    Google Scholar 

  • Tye, M.: Sorites paradoxes and the semantics of vagueness. In: Tomberlin, J.E. (ed.) Philosophical Perspectives 8: Logic and Language, pp. 189–206. Ridgeview Publishing Co., Atascadero (1994)

    Article  Google Scholar 

  • Van Eemeran, F.H., Grootendorst, R.: A Systematic Theory of Argumentation. Philosophy, vol. 12. Syndicate of the University of Cambridge (2004)

    Google Scholar 

  • Vetterlein, T., Cibattoni, A.: On the (fuzzy) logical content of CADIAG-2. Fuzzy Sets Syst. 1941–1958 (2010)

    Article  Google Scholar 

  • Vetterlein, T.: Logic of approximate entailment in quasimetric spaces. Int. J. Approx. Reason. 64, 39–53 (2015)

    Article  Google Scholar 

  • Vetterlein, T., Esteva, F., Godo, L.: Logics for approximate entailment in ordered universes of discourse. Int. J. Approx. Reason. 71, 50–63 (2016)

    Article  Google Scholar 

  • Zadeh, L.A.: Fuzzy set theory—a perspective. In: Gupta, M.M., Saridi, G.N., Gaines, B.R. (eds.) Fuzzy Automata and Decision Process, North Holland, New York, pp. 3–4 (1977)

    Google Scholar 

  • Zadeh, L.A.: Outline of a new approach to the analysis of complex systems an decision process. IEEE Trans. Syst. Man Cybern. SMC 1, 28–44 (1973)

    Article  Google Scholar 

  • Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)

    Article  Google Scholar 

  • Zadeh, L.A.: Fuzzy logic and approximate reasoning. Synthese 30, 407–428 (1975)

    Article  Google Scholar 

  • Zadeh, L.A.: PRUF-a meaning representation language for natural languages. Int. J. Man Mach. Stud. 10, 395–460 (1978)

    Article  Google Scholar 

  • Zadeh, L.A.: Generalized theory of uncertainty (GTU)-principal concepts and ideas. Comput. Stat. Data Anal. 51, 15–46 (2006)

    Article  Google Scholar 

  • Zadeh, L.A.: Toward extended fuzzy logic - a first step. Fuzzy Sets Syst. 160, 3175–3181 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihir Kumar Chakraborty .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chakraborty, M.K., Dutta, S. (2019). Introduction. In: Theory of Graded Consequence. Logic in Asia: Studia Logica Library. Springer, Singapore. https://doi.org/10.1007/978-981-13-8896-5_1

Download citation

Publish with us

Policies and ethics