Skip to main content

A Fault Diagnosis Method Based on Mathematical Morphology for Bearing Under Multiple Load Conditions

  • Conference paper
  • First Online:
Advanced Manufacturing and Automation VIII (IWAMA 2018)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 484))

Included in the following conference series:

Abstract

A mathematical morphology based status feature extraction method for rolling bearing is proposed in this paper. A status recognition method for bearing based on the feature is given under multiple load conditions. The experiment results verify that the proposed method can perform better than support vector machine based on time-frequency domain features, and also predict bearing status precisely with a mean accuracy of 99.53%. The comparison results show the proposed method can eliminate the influence of load conditions, and distinguish the actual status of bearing accurately. Above all, the calculation of the proposed method is very simple.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jardine, A.K.S., Lin, D.M., Banjevic, D.: A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mech. Syst. Signal Process. 20, 1483–1510 (2006)

    Article  Google Scholar 

  2. Ma, J.X., Xu, F.Y., Huang, K., et al.: GNAR-GARCH model and its application in feature extraction for rolling bearing fault diagnosis. Mech. Syst. Signal Process. 93, 175–203 (2017)

    Article  Google Scholar 

  3. Wang, C.C., Kang, Y., Liao, C.C.: Gear fault diagnosis in time domains via bayesian networks. Trans. Can. Soc. Mech. Eng. 37(3), 665–672 (2013)

    Article  Google Scholar 

  4. Shao, R.P., Hu, W.T., Li, J.: Multi-fault feature extraction and diagnosis of gear transmission system using time-frequency analysis and wavelet threshold de-noising based on EMD. Shock Vib. 20(4), 763–780 (2013)

    Article  Google Scholar 

  5. Bansal, S., Sahoo, S., Tiwari, R., et al.: Multiclass fault diagnosis in gears using support vector machine algorithms based on frequency domain data. Measurement 46(9), 3469–3481 (2013)

    Article  Google Scholar 

  6. Cheng, G., Chen, X.H., Li, H.Y., et al.: Study on planetary gear fault diagnosis based on entropy feature fusion of ensemble empirical mode decomposition. Measurement 91, 140–154 (2016)

    Article  Google Scholar 

  7. Boskoski, P., Juricic, D.: Fault detection of mechanical drives under variable operating conditions based on wavelet packet Renyi entropy signatures. Mech. Syst. Signal Process. 31(15), 369–381 (2012)

    Article  Google Scholar 

  8. Jena, D.P., Sahoo, S., Panigrahi, S.N.: Gear fault diagnosis using active noise cancellation and adaptive wavelet transform. Measurement 47, 356–372 (2014)

    Article  Google Scholar 

  9. Yang, D.L., Liu, Y.L., Li, S.B., et al.: Gear fault diagnosis based on support vector machine optimized by artificial bee colony algorithm. Mech. Mach. Theory 90, 219–229 (2015)

    Article  Google Scholar 

  10. Jaber, A.A., Bicker, R.: Fault diagnosis of industrial robot gears based on discrete wavelet transform and artificial neural network. Insight Non-Destruct. Test. Cond. Monit. 58(4), 179–186 (2016)

    Article  Google Scholar 

  11. Kane, P.V., Andhare, A.B.: Application of psychoacoustics for gear fault diagnosis using artificial neural network. J. Low Freq. Noise Vib. Active Control 35(3), 207–220 (2016)

    Article  Google Scholar 

  12. Kanai, R.A., Desavale, R.G., Chavan, S.P.: Experimental-based fault diagnosis of rolling bearings using artificial neural network. J. Tribol. Trans. ASME 138(3), 031103 (2016)

    Article  Google Scholar 

  13. Liu, Z., Liu, Y., Shan, H., et al.: A fault diagnosis methodology for gear pump based on EEMD and bayesian network. PLoS One 10(5), e0125703 (2015)

    Article  Google Scholar 

  14. Cerrada, M., Zurita, G., Cabrera, D., et al.: Fault diagnosis in spur gears based on genetic algorithm and random forest. Mech. Syst. Signal Process. 70–71, 87–103 (2016)

    Article  Google Scholar 

  15. He, M., He, D.: Deep learning based approach for bearing fault diagnosis. IEEE Trans. Ind. Appl. 53(3), 3057–3065 (2017)

    Article  Google Scholar 

  16. Mao, W.T., He, J.L., Li, Y., et al.: Bearing fault diagnosis with auto-encoder extreme learning machine: a comparative study. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 231(8), 1560–1578 (2017)

    Article  Google Scholar 

  17. Dong, S.J., Xu, X.Y., Chen, R.X.: Application of fuzzy C-means method and classification model of optimized K-nearest neighbor for fault diagnosis of bearing. J. Braz. Soc. Mech. Sci. Eng. 38(8), 2255–2263 (2016)

    Article  Google Scholar 

  18. Tian, J., Morillo, C., Azarian, M.H., et al.: Motor bearing fault detection using spectral kurtosis-based feature extraction coupled with K-nearest neighbor distance analysis. IEEE Trans. Industr. Electron. 63(3), 1793–1803 (2016)

    Article  Google Scholar 

  19. Dong, S.J., Sun, D.H., Tang, B.P., et al.: Bearing degradation state recognition based on kernel PCA and wavelet kernel SVM. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 229(15), 2827–2834 (2015)

    Article  Google Scholar 

  20. Dong, S.J., Luo, T.H.: Bearing degradation process prediction based on the PCA and optimized LS-SVM model. Measurement 46(9), 3143–3152 (2013)

    Article  Google Scholar 

  21. Yu, K., Lin, T.R., Tan, J.W.: A bearing fault diagnosis technique based on singular values of EEMD spatial condition matrix and Gath-Geva clustering. Appl. Acoust. 121, 33–45 (2017)

    Article  Google Scholar 

  22. Zvokelj, M., Zupan, S., Prebil, I.: EEMD-based multiscale ICA method for slewing bearing fault detection and diagnosis. J. Sound Vib. 370, 394–423 (2016)

    Article  Google Scholar 

  23. Maragos, P.: Measuring the fractal dimension of signals: morphological covers and iterative optimization. IEEE Trans. Signal Process. 41(1), 108–121 (1993)

    Article  MathSciNet  Google Scholar 

  24. Li, B., Zhang, P.L., Wang, Z.J., et al.: Morphological covering based generalized dimension for gear fault diagnosis. Nonlinear Dyn. 67(4), 2561–2571 (2012)

    Article  MathSciNet  Google Scholar 

  25. Khakipour, M.H., Safavi, A.A., Setoodeh, P.: Bearing fault diagnosis with morphological gradient wavelet. J. Frankl. Inst. Eng. Appl. Math. 354(6), 2465–2476 (2017)

    Article  MathSciNet  Google Scholar 

  26. http://csegroups.case.edu/bearingdatacenter/pages/download-data-file

  27. Islam, M.M., Kim, J., Khan, S.A., et al.: Reliable bearing fault diagnosis using Bayesian inference-based multi-class support vector machines. J. Acoust. Soc. Am. 141(2), EL89–EL95 (2017)

    Article  Google Scholar 

  28. http://www.csie.ntu.edu.tw/~cjlin/libsvm/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Ge .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ge, Y., Guo, L., Dou, Y. (2019). A Fault Diagnosis Method Based on Mathematical Morphology for Bearing Under Multiple Load Conditions. In: Wang, K., Wang, Y., Strandhagen, J., Yu, T. (eds) Advanced Manufacturing and Automation VIII. IWAMA 2018. Lecture Notes in Electrical Engineering, vol 484. Springer, Singapore. https://doi.org/10.1007/978-981-13-2375-1_3

Download citation

Publish with us

Policies and ethics