Skip to main content

Recent Developments in Rank Revealing and Lanczos Methods for TLS-Related Problems

  • Chapter
Total Least Squares and Errors-in-Variables Modeling

Abstract

The singular value decomposition (SVD) of a data matrix is useful for providing rank and subspace information as well as solving and analyzing total least squares (TLS) problems. Rank-revealing decompositions, herein referred to as UTV decompositions, and Lanczos methods have been proposed as substitutes for the SVD in various applications through the years. These type of methods are appropriate for solving TLS-related problems because they can efficiently and reliably provide an orthogonal basis that accurately approximates the needed numerical row space or null space.

The development and availability of reliable and robust codes for TLS algorithms always lags the pace of the literature. We discuss some recent developments in the use of UTV decompositions and Lanczos methods for solving TLS-related problems along with related Matlab codes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. H. Barkhuijsen, R. D. Beer, and D. V. Ormondt. Improved Algorithm for Non-iterative Time-Domain Model Fitting to Exponentially Damped Magnetic Resonance Signals. J. Magn. Reson., 30: 553–557, 1987.

    Google Scholar 

  2. J. L. Barlow, P. A. Yoon, and H. Zha. An Algorithm and a Stability Theory for Downdating the ULV Decomposition. BIT, 36: 14–40, 1996.

    MathSciNet  MATH  Google Scholar 

  3. A.W. Bojanczyk and J.M. Lebak. Downdating a ULLV Decomposition of Two Matrices, in J.G. Lewis (Ed.), Applied Linear Algebra, SIAM, Phil., 1994.

    Google Scholar 

  4. A.K. Cline, A.R. Conn, and C.F. Van Loan. Generalizing the LINPACK Condition Estimator. in J.P. Hennart (Ed.), Numerical Analysis, Lecture Notes in Mathematics, 909: 73–83, Springer, 1982.

    Google Scholar 

  5. J.W. Daniel, W.B. Gragg, L. Kaufman and G.W. Stewart. Reorthogonalization and Stable Algorithms for Updating the Gram-Schmidt QR Factorization, Math. Comp., 30: 772–795, 1976.

    MathSciNet  MATH  Google Scholar 

  6. R. de Beer and D. van Ormondt. Analysis of NMR Data Using Time Domain Fitting Procedures. in NMR Basic Principles and Progress, Vol. 26, Springer-Verlag, Berlin, 1992.

    Google Scholar 

  7. L. Eldén and E. Sjöström. Fast Computation of the Principal Singular Vectors of Toeplitz Matrices Arising in Exponential Data Modelling of a Toeplitz Matrix. Signal Processing, 50: 151–164, 1996.

    Article  MATH  Google Scholar 

  8. R.D. Fierro. Lanczos, Householder Transformations, and Implicit Deflation for Fast and Reliable Dominant Singular Subspace Computation. Num. Lin. Alg. with Applic., 8: 245–264, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  9. The software is available from the authors’ home pages: R.D. Fierro: http://www.csusm.edu/Math/fierro/RDF.html. P.C. Hansen: http://www.imm.dtu.dk/—pch.

    Google Scholar 

  10. R.D. Fierro, P.C. Hansen, and P.S.K. Hansen. UTV Tools: Matlab Templates for Rank Revealing UTV Decompositions. Numer. Algo., 20:165–194, 1999.

    Google Scholar 

  11. R.D. Fierro, L. Vanhamme, and S. Van Huffel. Total Least Squares Algorithms Based on Rank-Revealing Complete Orthogonal Decompositions. in Recent Advances in Total Least Squares Techniques and Errors-in-Variables Modeling, S. Van Huffel, ed., SIAM Proceedings series, 1997, pp. 99–116.

    Google Scholar 

  12. G. Golub and C. V. Loan. Matrix Computations. John Hopkins University Press, 1996.

    Google Scholar 

  13. S.H. Jensen, P.C. Hansen, S.D. Hansen, and J.Aa. Sorensen. Reduction of Broad-band Noise in Speech by Truncated QSVD. IEEE Trans. Audio Speech Proc., 3: 439–448, 1995.

    Article  Google Scholar 

  14. J. Kuczynski and H. Wozniakowski. Estimating the Largest Eigenvalue by the Power and Lanczos Algorithm with a Random Start. SIAM J. Matrix Anal. Appl., 13: 1094–1122, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  15. S. Kung, K. Arun, and B. Rao. State-space and Singular Value Decomposition-based Approximation Methods for the Harmonic Retrieval Problem. J. Opt. Soc. Am., 73: 1799–1811, 1983.

    Article  Google Scholar 

  16. F. T. Luk and D. Vandevoorde. Decomposing a Signal into a Sum of Exponentials in R.H. Chan, T.F. Chan, and G.H.Golub (Eds.) Iterative Methods in Scientific Computing, Springer, 1997.

    Google Scholar 

  17. M. Moonen, P. Van Dooren, and J. Vandewalle A Note on Efficient Numerically Stabilized Rank-One Eigenstructure Updating. IEEE Trans. on Signal Proc., 39: 1911–1913, 1991.

    Article  Google Scholar 

  18. B. Ottersten and T. Kailath. Direction-of-Arrival- Estimation for Wide-Band Signals Using the ESPRIT Algorithm. IEEE Trans. on Acoustics, Speech, Signal Proc., 38: 317–327, 1990.

    Google Scholar 

  19. H. Park and L. Eldèn. Downdating the Rank Revealing URV Decomposition. SIAM J. Matrix Anal. Appl., 16: 138–155, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  20. K.J. Ray Liu, D. O’Leary, G.W. Stewart, and Y.J. Wu. URV ESPRIT for Tracking Time-Varying Signals. IEEE Trans. on Signal Proc., 42: 3441–3448, 1994.

    Article  Google Scholar 

  21. G.W. Stewart. An Updating Algorithm for Subspace Tracking. IEEE Trans. on Signal Proc., 40: 1535–1541, 1992.

    Article  Google Scholar 

  22. G.W. Stewart. Updating a Rank-Revealing ULV Decomposition. SIAM J. Matrix Anal. Appl, 14: 494–499, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  23. Data Set 002 from the BioSource Database can be accessd at http://www.esat.kuleuven.ac.be/sista/members/biomed/data002.htm.

  24. S. Van Huffel, L. Aerts, J. Bervoets, J. Vandewalle, C. Decanniere, and P. Van Hecke. Improved Quantitative Time-Domain Analysis of NMR Data by Total Least Squares. in Proc. 6th Eur. Sign. Process. Conf. (EUSIPCO), vol. III, 1992, pp. 1721–1724.

    Google Scholar 

  25. S. Van Huffel, H. Chen, C. Decanniere, and P. V. Hecke. Algorithm for Time-domain NMR Data Fitting Based on Total Least Squares. J. Magn. Reson., 110: 228–237, 1994.

    Article  Google Scholar 

  26. L. Vanhamme, R. Fierro, S. Van Huffel, and R. D. Beer. Fast Removal of Residual Water in Proton Spectra. J. Magn. Reson., 132: 197–203, 1998.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Fierro, R.D., Hansen, P.C. (2002). Recent Developments in Rank Revealing and Lanczos Methods for TLS-Related Problems. In: Van Huffel, S., Lemmerling, P. (eds) Total Least Squares and Errors-in-Variables Modeling. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-3552-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-3552-0_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5957-4

  • Online ISBN: 978-94-017-3552-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics