Skip to main content

Quantitative Procedures in 3D PET

  • Chapter
The Theory and Practice of 3D PET

Part of the book series: Developments in Nuclear Medicine ((DNUM,volume 32))

Abstract

Positron tomography has always had a strong quantitative emphasis. The reconstructed volumes which result from 2D acquisition provide radioactivity concentrations accurate to within a few percent under well-controlled, calibrated conditions. This is mostly due to the low acceptance of scattered coincidences and the accuracy of the corrections for random coincidences, dead time, and attenuation. In 3D PET though, many of these factors are altered by the acquisition geometry and the procedures needed for 3D reconstruction. This chapter discusses the approaches taken at present to applying the various corrections needed for quantitative 3D PET.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Axelsson B, Msaki P, and Israelsson A (1984): “Subtraction of Compton-scattered photons in single-photon emission computerized tomography” J Nucl Med 25: 490–494

    PubMed  CAS  Google Scholar 

  • Bailey DL, Hutton BF, Meikle SR, Fulton RR, and Jackson CB (1989a): “An attenuation dependent scatter correction technique for SPECT” Phys Med Biol 34: 152 (Abstract)

    Google Scholar 

  • Bailey DL, Hutton BF, Meikle SR, Fulton RR, and Jackson CB (1989b): “Iterative scatter correction incorporating attenuation data” Eur J Nucl Med 15: 452 (Abstract)

    Google Scholar 

  • Bailey DL and Jones T (1995): “Normalisation for 3D PET with a Translating Line Pseudo-Plane Source” J Nucl Med 36 (5): 92P (Abstract)

    Google Scholar 

  • Bailey DL and Jones T (1997): “A method for calibrating three-dimensional positron emission tomography without scatter correction” Eur J Nucl Med 24 (6): 660–664

    PubMed  CAS  Google Scholar 

  • Bailey DL, Jones T, and Spinks TJ (1991): “A Method for Measuring the Absolute Sensitivity of Positron Emission Tomographic Scanners” Eur J Nucl Med 18: 374–379

    Article  PubMed  CAS  Google Scholar 

  • Bailey DL and Meikle SR (1994): “A convolution-subtraction scatter correction method for 3D PET” Phys Med Biol 39 (3): 411–424

    Article  PubMed  CAS  Google Scholar 

  • Bailey DL, Townsend DW, Kinahan PE, Grootoonk S, and Jones T (1996): “An Investigation of Factors Affecting Detector and Geometric Correction in Normalisation of 3D PET Data” IEEE Trans Nucl Sci NS-43: 1300–1307

    Google Scholar 

  • Barney JS, Harrop R, and Dykstra CJ (1993): “Source Distribution Dependent Scatter Correction for PVI” IEEE Trans Nucl Sci NS-40(4): 1001–1007

    Google Scholar 

  • Barney JS, Rogers J, Harrop R, and Hoverath H (1991): “Object shape dependent simulations for PET” IEEE Trans Nucl Sci NS-38(2): 719–725

    Google Scholar 

  • Beck RN, Schuh MW, Cohen TD, and Lembares N (1969): “Effects of Scattered Radiation on Scintillation Detector Response”. In: Medical Radioisotope Scintigraphy. Vienna: IAEA, Vol 1: pp. 595–615

    Google Scholar 

  • Bendriem B, Trébossen R, Froulin V, and Syrota A (1993): “A PET Scatter Correction Using Simultaneous Acquisitions with Low and High Lower Energy Thresholds”. In: Klaisner L, ed. Proceedings of the IEEE Nuclear Science Symposium and Medical Imaging Conference, San Francisco, USA. Vol 3: 1779–1783

    Google Scholar 

  • Bentourkia M, Msaki P, Cadorette J, and Lecomte R (1993): “Assessment of Scatter Components in Multispectral PET Imaging”. In: Klaisner L, ed. Proceedings of the IEEE Nuclear Science Symposium and Medical Imaging Conference, San Francisco, USA. Vol 3: 1505–1509

    Google Scholar 

  • Bentourkia M, Msaki P, Cadorette J, and Lecomte R (1995): “Energy Dependence of Scatter Components in Multispectral PET Imaging” IEEE Trans Nucl Sci NS-14(1): 138145

    Google Scholar 

  • Bergstrom M, Eriksson L, Bohm C, Blomqvist G, and Litton J-E (1983): “Correction for scattered radiation in a ring detector positron camera by integral transformation of the projections” J Comput Assist Tomogr 7 (1): 42–50

    Article  PubMed  CAS  Google Scholar 

  • Bergstrom M, Eriksson L, Greitz T, Litton J, and Widen L (1982): “A Procedure for Calibrating and Correcting Data to Achieve Accurate Quantitative Values in Positron Emission Tomography” IEEE Trans Nucl Sci NS-29(1): 555–557

    Google Scholar 

  • Casey ME, Gadagkar H, and Newport D (1995): “A Component Based Method for Normalization in Volume PET”. In: Grangeat P and Amans J-L, eds. Proceedings of the 3rd International Conference on Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine, Aix-les-Bains. Vol 67–71

    Google Scholar 

  • Casey ME and Hoffman EJ (1986): “Quantitation in positron emission tomography: 7. A technique to reduce noise in accidental coincidence measurement and coincidence efficiency calibration” J Comput Assist Tomogr 10 (5): 845–850

    Article  PubMed  CAS  Google Scholar 

  • Cherry SR, Dahlbom M, and Hoffman EJ (1991): “3D PET using a Conventional Multislice Tomograph without Septa” J Comput Assist Tomogr 15: 655–668

    Article  PubMed  CAS  Google Scholar 

  • Cherry SR, Dahlbom M, and Hoffman EJ (1992): “Evaluation of a 3D reconstruction algorithm for multi-slice PET scanners” Phys Med Biol 37: 779–790

    Article  PubMed  CAS  Google Scholar 

  • Cherry SR and Huang S-C (1995): “Effects of Scatter on Model Parameter Estimates in 3D PET Studies of the Human Brain” IEEE Trans Nucl Sci NS-42(4): 1174–1179

    Google Scholar 

  • Cherry SR, Meikle SR, and Hoffman EJ (1993): “Correction and Characterization of Scattered Events in Three-Dimensional PET Using Scanners with Retractable Septa” J Nucl Med 34: 671–678

    PubMed  CAS  Google Scholar 

  • Chesler DA and Stearns CW (1990): “Calibration of detector sensitivity in positron cameras” IEEE Trans Nucl Sci 37 (2): 768–772

    Article  CAS  Google Scholar 

  • Compton AH (1923): “A quantum theory of the scattering of X-rays by light elements” Phys Rev 21: 483–502

    Article  CAS  Google Scholar 

  • Dahlbom M and Hoffman EJ (1987): “Problems in signal-to-noise ratio for attenuation correction in high resolution PET” IEEE Trans Nucl Sci 34 (1): 288–293

    Article  Google Scholar 

  • Defrise M, Townsend DW, Bailey DL, Geissbühler A, Michel C, and Jones T (1991): “A normalization technique for 3D PET data” Phys Med Biol 36 (7): 939–952

    Article  PubMed  CAS  Google Scholar 

  • deKemp RA and Nahmias C (1994): “Attenuation correction in PET using single photon transmission measurement” Med Phys 21 (6): 771–778

    Article  PubMed  CAS  Google Scholar 

  • Derenzo SE, Zaklad H, and Budinger TF (1975): “Analytical study of a high-resolution positron ring detector system for transaxial reconstruction tomography” J Nucl Med 16 (12): 1166–1173

    PubMed  CAS  Google Scholar 

  • DeVito R, Hamill J, Trefert J, and Stoub E (1989): “Energy-weighted acquisition of scintigraphic images by analysis of energy spectra” J Nucl Med 30: 2029–2035

    Google Scholar 

  • Digby WM and Hoffman EJ (1989): “An investigation of scatter in attenuation correction for PET” IEEE Trans Nucl Sci NS-36(1): 1038–1042

    Google Scholar 

  • Egbert SD and May RS (1980): “An integral-transport method for Compton-scatter correction in emission computed tomography” IEEE Trans Nucl Sci NS-27(1): 543–547

    Google Scholar 

  • Eichung JO, Higgins CS, and Ter-Pogossian MM (1977): “Determination of Radionuclide Concentrations with Positron CT Scanning ( PETT ): Concise Communication” J Nucl Med 18: 845–847

    Google Scholar 

  • Floyd CE, Jaszczak RT, Greer KL, and Coleman RE (1985): “Deconvolution of Compton scatter in SPECT” J Nucl Med 26: 403–408

    PubMed  Google Scholar 

  • Gagnon D, Todd-Pokropek A, Arsenault A, and Dupras G (1989): “Introduction to holospectral imaging in nuclear medicine for scatter subtraction” IEEE Trans Med Imag MI-8: 245–250

    Google Scholar 

  • Goggin AS and 011inger JM (1994): “A model for multiple scatters in fully 3D PET”. In: Trendler RC, ed. Proceedings of the IEEE Nuclear Science Symposium and Medical Imaging Conference, Norfolk, VA, USA. Vol 4: 1609–1613

    Google Scholar 

  • Grootoonk S, Spinks TJ, Jones T, Michel C, and Bol A (1991): “Correction for scatter using a dual energy window technique with a tomograph operated without septa”. In: Proceedings of the IEEE Nuclear Science Symposium and Medical Imaging Conference, Santa Fe. Vol 3: 1569–1573

    Google Scholar 

  • Harrison RL, Haynor DR, and Lewellen TK (1991): “Dual energy window scatter corrections for PET”. In: Proceedings of the IEEE Nuclear Science Symposium and Medical Imaging Conference, Santa Fe. Vol 3: 1700–1704

    Google Scholar 

  • Haynor DR, Kaplan MS, Miyaoka RS, and Lewellen TK (1995): “Multi-window scatter correction techniques in single-photon imaging” Med Phys 22 (12): 2015–2024

    Article  PubMed  CAS  Google Scholar 

  • Hiltz LG and McKee BTA (1994): “Scatter correction for three-dimensional PET based on an analytical model dependent on source and attenuating object” Phys Med Biol 39: 2059–2071

    Article  PubMed  CAS  Google Scholar 

  • Hoffman EJ, Guerrero TM, Germano G, Digby WM, and Dahlbom M (1989): “PET system calibration and corrections for quantitative and spatially accurate imagees” IEEE Trans Nucl Sci 36 (1): 1108–1112

    Article  Google Scholar 

  • Huang S-C, Carson R, Phelps ME, Hoffman EJ, Schelbert H, and Kuhl D (1981): “A boundary method for attenuation correction in positron emission tomography” IEEE Trans Nucl Sci 22: 627–637

    CAS  Google Scholar 

  • Huang SC, Hoffman EJ, Phelps ME, and Kuhl DE (1979): “Quantitation in positron emission tomography: 2. Effect of inaccurate attenuation correction” J Comput Assist Tomogr 3 (6): 804–814

    PubMed  CAS  Google Scholar 

  • Jaszczak RJ, Greer KL, Floyd CE, Harris CG, and Coleman RE (1984): “Improved SPECT quantitation using compensation for scattered photons” J Nucl Med 25: 893–900

    PubMed  CAS  Google Scholar 

  • Jones T, Bailey DL, Bloomfield PM, et al (1996): “Performance Characteristics And Novel Design Aspects Of The Most Sensitive PET Camera Built For High Temporal And Spatial Resolution” J Nucl Med 37(5): 85P (Abstract)

    Google Scholar 

  • Jones WF, Vaigneur K, Young J, Moyers C, and Nahmias C (1995): “The Architectural Impact of Single Photon Transmission Measurements on Full Ring 3D Positron Tomography”. In: Moonier PA, ed. Proceedings of the IEEE Nuclear Science Symposium and Medical Imaging Conference, San Francisco. Vol 2: 1026–1030

    Google Scholar 

  • Karp JS, Daube-Witherspoon ME, Hoffman EJ, et al (1991): “Performance Standards in Positron Emission Tomography” J Nucl Med 32 (12): 2342–2350

    PubMed  CAS  Google Scholar 

  • Karp JS, Muehllehner G, Qu H, and Yan X-H (1995): “Singles transmission in volume-imaging PET with a 137Cs source” Phys Med Biol 40: 929–944

    Article  PubMed  CAS  Google Scholar 

  • Karp JS, Muehllener G, Mankoff DA, Ordonez CE, 011inger JM, Daube-Witherspoon ME, Haigh AT, and Beerbohm DJ (1990): “Continuous-slice PENN-PET: a positron tomograph with volume imaging capability” J Nucl Med 31: 617–627

    PubMed  CAS  Google Scholar 

  • Kinahan PE and Rogers JG (1989): “Analytic 3-D image reconstruction using all detected events” IEEE Trans Nucl Sci NS-36: 964–968

    Google Scholar 

  • Kinahan PE, Townsend DW, Bailey DL, Sashin D, Jadali F, and Mintun MA (1995): “Efficiency Normalization Techniques for 3D PET Data”. In: Moonier PA, ed. Proceedings of the IEEE Nuclear Science Symposium and Medical Imaging Conference, San Francisco. Vol 2: 1021–1025

    Google Scholar 

  • King M, Schwinger R, Doherty P, and Penney B (1984): “Two-dimensional filtering of SPECT images using the Metz and Weiner filters” J Nucl Med 25: 1234–1240

    PubMed  CAS  Google Scholar 

  • King MA, Hademenos GJ, and Glick SJ (1992): “A dual-photopeak window method for scatter correction” J Nucl Med 33: 605–612

    PubMed  CAS  Google Scholar 

  • Klein O and Nishina Y (1928): “über die streuung von strahlung durch frei elektronen nach der neuen relativistischen quantendynamik von Dirac” Z Physik 52: 853–868

    Article  Google Scholar 

  • Koral KF, Clinthome NH, and Rogers WL (1986): “Improving emission-computedtomography quantification by compton-scatter rejection through offset windows” Nucl Instr Meth Phys Res A242: 610–614

    Article  Google Scholar 

  • Larsson SA (1980): “Gamma camera emission tomography. Development and properties of a multi-sectional emission computed tomography system” Acta Radiol Suppl 363: 30–32

    Google Scholar 

  • Lercher MJ and Wienhard K (1994): “Scatter Correction in 3-D PET” IEEE Trans Med Imag MI-13(4): 649–657

    Google Scholar 

  • Levin CS, Dahlbom M, and Hoffman EJ (1995): “A Monte Carlo Correction for the Effect of Compton Scattering in 3-D PET Brain Imaging” IEEE Trans Nucl Sci NS-42(4): 1181–1185

    Google Scholar 

  • Links JM, Leal W. Mueller-Gartner HW, and Wagner Jr HN (1992): “Improved positron emission tomography quantification by Foruier-based restoration filtering” Eur J Nucl Med 19: 925–932

    PubMed  CAS  Google Scholar 

  • Ljungberg M and Strand S-E (1990): “Scatter and attenuation correction in SPECT using density maps and Monte Carlo simulated scatter functions” J Nucl Med 31: 1560–1567 attenuation correction for a 3D PET system“ Phys Med Biol 36 (5): 603–619

    Google Scholar 

  • McKee BTA, Gurvey AT, Harvey PJ, and Howse DC (1992): “A Deconvolution Scatter Correction for a 3-D PET System” IEEE Trans Med Imag MI-11(4): 560–569

    Google Scholar 

  • McKee BTA and Hiltz LG (1994): “Attenuation correction for three-dimensional PET using uncollimated flood-source transmission measurements” Phys Med Biol 39: 20432058

    Google Scholar 

  • Meikle SR, Dahlbom M, and Cherry SR (1993): “Attenuation correction using count-limited transmission data in positron emission tomography” J Nucl Med 34 (1): 143–150

    PubMed  CAS  Google Scholar 

  • Meikle SR, Hutton BF, and Bailey DL (1994): “A transmission dependent method for scatter correction in SPECT” J Nucl Med 35 (2): 360–367

    PubMed  CAS  Google Scholar 

  • Meikle SR, Hutton BF, Bailey DL, Fulton RR, and Schindhelm K (1991): “SPECT scatter correction in non-homogeneous media”. In: Colchester ACF and Hawkes DJ, Information Processing in Medical Imaging: XIlth IPMI International Conference. Berlin: Springer-Verlag, pp. 34–44

    Google Scholar 

  • Msaki P, Axelsson B, Dahl CM, and Larsson SA (1987): “Generalized scatter correction method in SPECT using point scatter distribution functions” J Nucl Med 28: 1861–1869

    PubMed  CAS  Google Scholar 

  • Mumcuoglu EU, Leahy R, Cherry SR, and Zhou Z (1994): “Fast Gradient Based Methods for Bayesian Reconstruction of Transmission and Emission PET Images” IEEE Trans Med Imag MI-13: 687–701

    Google Scholar 

  • Naude H, van Aswegen A, Herbst CP, Lotter MG, and Pretorius PH (1996): “A Monte Carlo evaluation of the channel ratio scatter correction method” Phys Med Biol 41: 1059–1066

    Article  PubMed  CAS  Google Scholar 

  • NEMA (1986): Performance measurements of scintillation cameras. Standards Publication NU-1–1986, National Electrical Manufacturers Association, Washington, DC

    Google Scholar 

  • inger J (1991): “Estimation of the distribution of scattered coincidences in PET using transmission scans” J Nucl Med 32: 996

    Google Scholar 

  • inger JM (1995): “Detector Efficiency and Compton Scatter in Fully 3D PET” IEEE Trans Nucl Sci NS-42(4): 1168–1173

    Google Scholar 

  • inger JM (1996): “Model-based scatter correction for fully 3D PET” Phys Med Biol 41 (1): 153–176

    Article  PubMed  CAS  Google Scholar 

  • inger JM and Johns GC (1993): “Model-Based Scatter Correction for Fully 3D PET”. In: Klaisner L, ed. Proceedings of the IEEE Nuclear Science Symposium and Medical Imaging Conference, San Francisco, USA. Vol 3: 1264–1268

    Google Scholar 

  • Penney BC, Rajeevan N, Bushe HS, Hademenos G, and King MA (1991): “A scatter reduction method for In-111 scintigrams using five energy windows”. In: Baldwin GT, ed. Proceedings of the IEEE Nuclear Science Symposium and Medical Imaging Conference, Santa Fe. Vol 3: 1866–1873

    Google Scholar 

  • Prati P, Lanza P, Corveisiero P, Guzzardi R, and Sorace 0 (1993): “Verification of the integral transformation of the projection technique for scatter correction in positron tomographs” Eur J Nucl Med 20: 255–259

    PubMed  CAS  Google Scholar 

  • Pretorious P, van Rensburg A, van Aswegen A, Lötter M, Serfontein D, and Herbst C (1993): “The Channel Ratio method of Scatter Correction for Radionuclide Image Quantitation” J Nucl Med 34: 330–335

    Google Scholar 

  • Rakshi J, Bailey DL, Morrish PK, and Brooks DJ (1996): “Implementation of 3D Acquisition, Reconstruction and Analysis of Dynamic Fluorodopa Studies”. In: Myers R, Cunningham VJ, Bailey DL and Jones T, Quantification of Brain Function Using PET. San Diego: Academic Press, pp. 82–87

    Google Scholar 

  • Shao L, Freifelder R, and Karp JS (1994): “Triple Energy Window Scatter Correction Technique in PET” IEEE Trans Med Imag 13 (4): 641–648

    Article  CAS  Google Scholar 

  • Shao L and Karp JS (1991): “Cross-Plane Scattering Correction–Point Source Deconvolution in PET” IEEE Trans Med Imag MI-10(3): 234–239

    Google Scholar 

  • Shao L and Karp JS (1995): “Modified Convolution-Subtraction Scattering Correction Technique for 3D PET”. In: Proceedings of the IEEE Nuclear Science Symposium and Medical Imaging Conference, San Francisco. Vol (to appear)

    Google Scholar 

  • Shao L, Karp IS, and Freifelder R (1993): “Composite dual window scattering correction technique in PET”. In: Klaisner L, ed. Proceedings of the IEEE Nuclear Science Symposium and Medical Imaging Conference, San Francisco, USA. Vol 3: 1391–1395

    Google Scholar 

  • Spinks TJ, Jones T, Bailey DL, Townsend DW, Grootoonk S, Bloomfield PM, Gilardi MC, Sipe B, and Reed J (1992): “Physical performance of a positron tomograph for brain imaging with retractable septa” Phys Med Biol 37 (8): 1637–1655

    Article  PubMed  CAS  Google Scholar 

  • Stazyk MW, Sossi V, Buckley KR, and Ruth TJ (1994): “Normalization Measurement in Septa-less PET Scanners” J Nucl Med 35 (5): 41P (Abstract)

    Google Scholar 

  • Stearns CW (1995): “Scatter Correction Methods for 3D PET Using 2D Fitted Gaussian Functions” J Nucl Med 36(5): 105P (Abstract)

    Google Scholar 

  • Thompson CJ (1993): “The Problem of Scatter Correction in Positron Volume Imaging” IEEE Trans Med Imag MI-10: 234–239

    Google Scholar 

  • Townsend DW, Bishop H, Mintun MA, Byars LG, Geissbühler A, and Nutt R (1994a): “Physical and Clinical Performance of a Rotating Positron Tomograph” J Nucl Med 35 (5): 41P (Abstract)

    Google Scholar 

  • Townsend DW, Choi Y, Sashin D, and Mintun M (1994b): “An Investigation of Practical Scatter Correction Techniques for 3D PET” J Nucl Med 35 (5): 50P (Abstract)

    Google Scholar 

  • Townsend DW, Geissbühler A, Defrise M, Hoffman EJ, Spinks TJ, Bailey DL, Gilardi M-C, and Jones T (1991): “Fully Three-Dimensional Reconstruction for a PET Camera with Retractable Septa” IEEE Trans Med Imag 10: 505–512

    Article  CAS  Google Scholar 

  • Townsend DW, Price JC, Mintun MA, Kinahan PE, Jadali F, Sashin D, Simpson N, and Mathis CA (1996): “Scatter Correction for Brain Receptor Quantitation in 3D PET”. In: Myers R, Cunningham VJ, Bailey DL and Jones T, Quantification of Brain Function Using PET. San Diego: Academic Press, pp. 76–81

    Google Scholar 

  • Townsend DW, Spinks TJ, Jones T, Geissbühler A, Defrise M, Gilardi M-C, and Heather JD (1989): “Three dimensional reconstruction of PET data from a multi-ring camera” IEEE Trans Nucl Sci 36 (1): 1056–1065

    Article  CAS  Google Scholar 

  • Townsend DW, Wensveen M, Byars LG, Geissbühler A, Tochon-Danguy HJ, Christin A, Defrise M, Bailey DL, Grootoonk S, Donath A, and Nutt R (1993): “A Rotating PET Scanner Using BGO Block Detectors: Design, Performance and Applications” J Nucl Med 34: 1367–1376

    Google Scholar 

  • Trébossen R and Bendriem B (1995a): “Quantitation in 3D PET; the effect of scatter correction on recovery coefficient”. In: Grangeat P, ed. Proceedings of the 3rd International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine, Aix-les-Bains, France. Vol 127–131

    Google Scholar 

  • Trébossen R, Bendriem B, Fontaine A, Frouin V, and Remy P (1996): “Quantitation of the [18F]Fluorodopa Uptake in the Human Striatum in 3D PET with the ETM Scatter Correction”. In: Myers R, Cunningham VJ, Bailey DL and Jones T, Quantification of Brain Function Using PET. San Diego: Academic Press, pp. 88–92

    Google Scholar 

  • Trébossen R, Bendriem B, Fontaine A, Rougetet R, Frouin V, and Remy P (1995b): “Quantitation of Clinical 3D PET Studies with the ETM Scatter Correction”. In: Moonier PA, ed. Proceedings of the IEEE Nuclear Science Symposium and Medical Imaging Conference, San Francisco. Vol 3: 1447–1452

    Google Scholar 

  • Watson CC, Newport D, and Casey ME (1996): “A Single Scatter Simulation Technique for Scatter Correction in 3D PET”. In: Grangeat P and Amans J-L, Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine. Dordrecht: Kluwer Academic, (Viergever MA, ed. Computational Imaging and Vision; Vol 4: pp. 255–268

    Chapter  Google Scholar 

  • Wu C, Ordenez CE, and Chen C-T (1994): “Characterization and Correction for Scatter in 3D PET Using Rebinned Plane Integrals” IEEE Trans Nucl Sci NS-41(6): 2758–2764

    Google Scholar 

  • Wu C, Ordonez CE, and Chen C-T (1993): “Scatter Correction for 3-D PET by Convolution of Plane-Integral Projections”. In: Klaisner L, ed. Proceedings of the IEEE Nuclear Science Symposium and Medical Imaging Conference, San Francisco, USA. Vol 3: 1515–1519

    Google Scholar 

  • Xu EZ, Mullani NA, Gould KL, and Anderson WL (1991): “A segmented attenuation correction for PET” J Nucl Med 32: 161–165

    PubMed  CAS  Google Scholar 

  • Xu M, Luk WK, Cutler PD, and Digby WM (1994): “Local threshold for segmented attenuation correction of PET imaging of the thorax” IEEE Trans Nucl Sci NS-41: 1532–1537

    Google Scholar 

  • Yanch JC, Flower MA, and Webb S (1990): “Improved quantification of radionuclide uptake using deconvolution and windowed subtraction techniques for scatter compensation in single photon emission computed tomography” Med Phys 17 (6): 1011–1022

    Article  PubMed  CAS  Google Scholar 

  • Yu SK and Nahmias C ( 1995 “Single-photon transmission measurements in positron emission tomography using 1 7Cs” Phys Med Biol 40: 1255–1266

    Article  PubMed  CAS  Google Scholar 

  • Yu SK and Nahmias C (1996): “Segmented attenuation correction using artificial neural networks in positron tomography” Phys Med Biol 41: 2189–2206

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bailey, D.L. (1998). Quantitative Procedures in 3D PET. In: Bendriem, B., Townsend, D.W. (eds) The Theory and Practice of 3D PET. Developments in Nuclear Medicine, vol 32. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-3475-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-3475-2_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5040-3

  • Online ISBN: 978-94-017-3475-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics