Skip to main content

Membrane glycerolipid and sphingolipid headgroups

  • Chapter
Plant Membranes

Abstract

The glycerolipid headgroups serve as the hydrophilic plane of the membrane bilayer and on the one hand provide the interface between the membrane and its milieu while on the other hand, between the internal cytosol and the membrane. In the previous chapter we pointed out that the “backbone” of glycerolipids is the alcohol — glycerol. In the various phospholipids the third serial number carbon atom (sn — 3) undergoes esterification with a phosphate (PO4) group to initially form phosphatidic acid. The latter is considered the parent compound from which other species of phospholipids may be derived. The sn — 3 carbon atom may also bind with either a carbohydrate group (primarily galactose or glucose) or with a sulphur containing constituent in which case respectively galactolipids or sulpholipids are formed. In sphingolipids the basic alcohol is not glycerol but rather sphingosine and the anchoring function joining the headgroup to the two non-polar tails is fulfilled by the serine-derived section forming the initial two carbon atoms of this long chained alcohol.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References and recommended reading

  • Arondel, V., Tchang, F., Vergnolle, C., Grosbois, M., Guerbete, F., Jolliot, A., Morch, M., Pernollet, J., Delsemy, M., Puigodomenech, P., and Kader, J.C. 1989. Plant lipid transfer proteins. pp. 341–50. In: Eds. P. Biacs, K. Gruiz and T. Kremmer. The Biological Role of Plant Lipids. Adakemiai Kiado, Budapest, and Plenum Press, New York.

    Google Scholar 

  • Barnes, P.J., Fan Chung, K. and Page, C.P. 1988. Inflammatory mediators and asthma. Pharmacol. Rev. 40: 49–84.

    PubMed  CAS  Google Scholar 

  • Batty, R.S. and Slinkard, A.E. 1989. Relationship between phytic acid and cooking quality in lentils. Can. Inst. Food Sci. Tech. Jour. 22: 137–42.

    Google Scholar 

  • Beatrice, M.C., Palmer, J.W. and Pfeiffer, D.R. 1980. The relationship between mitochondrial membrane permeability, membrane potential and the retention of Ca2± by mitochondria. J. Biol. Chem. 225: 8863–71.

    Google Scholar 

  • Bishop, W.R. and Bell R.M. 1985. Assembly of the ER phospholipid bilayer: the PC transporter. Cell 42: 51–60.

    Article  PubMed  CAS  Google Scholar 

  • Clark, K.A. and Goldsmith, M.H.M. 1987. Effect of surface and membrane potentials on IAA uptake and binding by Zucchini membrane vesicles. pp. 99–112. In: Ed. D. Klämbt. Plant Hormone Receptors. Nato ASI series Vol. H10. Springer Verlag, Berlin, Heidelberg.

    Google Scholar 

  • Cooke, D.T. and Burden, R.S. 1990. Lipid modulation of plasma membrane bound ATPase. Phys. Plant. 78: 153–9.

    Article  CAS  Google Scholar 

  • Daum, G. 1985. Lipids of mitochondria. Biochem. Biophys. Acta 882: 1–42.

    Google Scholar 

  • Davies, E. 1987. Action potentials as mulifunctional signals in plants: a unifying hypothesis to explain apparently disparate wound responses. Plant, Cell, Environ. 10: 623–31.

    Google Scholar 

  • Davies, E. 1990. Wound signals and translation. pp. 518–30. In: Eds. R. Pharis and S. Rood. Plant Growth Substances, 1988. Springer Verlag, Berlin.

    Google Scholar 

  • de Gier, J., van Echteld, C.J.A., van der Steen, A.T.M., Noordam, P.C., Verkleij, A.J. and de Kruijff, B. 1982. Lipid organization and barrier functions of membranes. pp. 315–25. In: Eds. J.F.G.N. Wintermans and I.J.C. Kuiper. Biochemistry and Metabolism of Plant Membranes. Elsevier, Amsterdam.

    Google Scholar 

  • de Kroon, A.I.P.M., Timmermans, J.W., Killian, J.A. and de Kruijff, B. 1990. The pH dependence of headgroup and acyl chain structure and dynamics of PS studied by H-NMR. Chem. Physics Lip. 54: 33–42.

    Article  Google Scholar 

  • Douce, R., Alban, C., Bligny, R., Bloch, M.A., Covès, J., Dorne, A.J., Journet, E.P., Joyard, F., Neuberger, M. and Rebeille, F. 1987. Lipid distribution and synthesis within the plant cell. pp. 255–63. In: Eds. P.K. Stumpf, J.B. Mudd and W.D. Ness. The Metabolism, Structure and Function of Plant Lipids. Plenum Press, New York.

    Google Scholar 

  • Douce, R. and Joyard, J. 1980. Plant galactolipids. pp. 321–62. In: Eds. P.K. Stumpf and E.E. Conn. The Biochemistry of Plants. Academic Press, New York.

    Google Scholar 

  • Erdélyl, A.P. 1989. Enzymic modification of sunflower lecithin. pp. 455–8. In: Eds. K. Gruiz and T. Kremmer. Biological Role of Plant Lipids. Plenum Press, New York.

    Google Scholar 

  • Felle, H. 1982. Effects of fusicoccin upon membrane potential, resistance and currentvoltage characteristics in root hairs of Sinapis alba. Plant Sci. Lett. 25: 219–25.

    Article  CAS  Google Scholar 

  • Geiger, B. 1985. Microfilament-membrane interaction. Trends. Biochem. Sci. 10: 456–61

    Article  CAS  Google Scholar 

  • Gounaris, K., Barber, J. and Harwood, J.L. 1986. The thylakoid membrane of higher plant chloroplasts. Biochem. Jour. 237: 313–26.

    CAS  Google Scholar 

  • Honig, B.H. 1986. Electrostatic interactions in membranes and proteins. Ann. Rev. Biophys. and Biophys. Chem. 15: 163–93.

    Article  CAS  Google Scholar 

  • Joyard, J. and Douce, R. 1987. Galactolipid synthesis. pp. 215–73. In: Eds. P.R. Stumpf and E.E. Conn. The Biochemistry of Plants. Vol. 9. Lipids: Structure and Function. Academic Press, New York, London.

    Google Scholar 

  • Kader, J.C. 1985. Lipid binding proteins in plants. Chem. Physics Lipids, 38: 51–62.

    Article  CAS  Google Scholar 

  • Kader, J.C., Douady, D. and Mazliak, P. 1982. Phospholipid transfer proteins. pp. 276–311. In: Eds. J.N. Hawthorne and G.B. Ansell. Phospholipids. Elsevier,Amsterdam.

    Google Scholar 

  • Körner, L.E., Kjellbom, P., Larsson, C., and Moller, J.M. 1985. Surface properties of right side out plasma membrane vesicles isolated from barley roots and leaves. Plant Physiol. 79: 72–9.

    Article  PubMed  Google Scholar 

  • Landau, E.M. and Leshem, Y.Y. 1988. Biophysical interactions of membrane anionic phospholipids with sphingolipid, calcium and auxins. J. Exp. Bot. 39: 551–9.

    Article  Google Scholar 

  • Leshem, Y.Y. 1987. Membrane phospholipid catabolism and Cat+ activity in control of senescence. Physiol. Plant. 69: 551–59.

    Article  CAS  Google Scholar 

  • Leshem, Y.Y. 1991. Evidence of the presence and mode of action of a membrane-associated plant phospholipase A2. pp. 53–5. In: Eds. P. Quinn and J.L. Harwood. Plant Lipid Biochemistry. Structure and Utilization. Portland Press, London and Colchester.

    Google Scholar 

  • Leshem, Y.Y., Halevy, A.H. and Frenkel, C. 1986. Processes and Control of Plant Senescence. pp. 71–9. Elsevier Press, Amsterdam.

    Google Scholar 

  • Ling, G.N. 1969. A new model for the living cell. A summary of the theory and recent experimental evidence in its support. Int. Rev. Cytol. 26: 1–61.

    Article  PubMed  CAS  Google Scholar 

  • Low, M.G. 1987. Biochemistry of the glycosyl-phosphatidyl-inositol membrane protein anchors. Biochem. J. 244: 1–13.

    PubMed  CAS  Google Scholar 

  • Lucy, J.A. 1970. The fusion of biological membranes. Nature 227: 815–7.

    Article  PubMed  CAS  Google Scholar 

  • Lynch, D.V. 1991. Glycosphingolipids of plant membranes. pp. 47–52. In: Eds. P. Quinn and J. Harwood. Plant Lipid Biochemistry. Structure and Utilization. Portland Press, London and Colchester.

    Google Scholar 

  • Mansfield, T.A. and Atkinson, C.J. 1989. Calcium and abscisic acid. How do they control stomata in the intact plant. p. 50. In: Eds. H. Göring and P. Koffman. Stomata ‘89. Colloquia Pflanzenphysiol. Humbolt University, Berlin.

    Google Scholar 

  • McAinsh, M.R., Brownlee, C. and Hetherington, A.M. 1990. Abscisic acid induced elevation of guard cell cytosolic Cat+ precedes stomatal closure. Nature 343: 186–8.

    Article  CAS  Google Scholar 

  • Moller, I.M. and Crane, F.L. 1990. Redox processes in the plasma membrane. pp. 93–126. In: Eds. C. Larsson and I.M. Moller. The Plant Plasma Membrane. Springer Verlag, Berlin-Heidelberg.

    Google Scholar 

  • Moller, I.M. and Lin, W. 1986. Membrane bound NAD(P)H dehydrogenases in higher plant cells. Ann. Rev. Plant. Physiol. 37: 309–34.

    Article  Google Scholar 

  • Morré, D.J., Brightman, A., Wang, J., Barr, R. and Crane, F.L. 1988. Roles for plasma membrane redox systems in cell growth. pp. 45–55. In: Eds. F.L. Crane, D.J. Morré and H. Low. Plasma Membrane Oxidoreductases in Control of Animal and Plant Growth. Plenum Publishers, New York.

    Google Scholar 

  • Mudd, J.B. and Kleppinger, F.K. 1987. Sulpholipids. pp. 275–90. In: Eds. P.K. Stumpf and E.E. Conn. The Biochemistry of Plants. Vol. 9. Lipids. Structure and Function. Academic Press, New York.

    Google Scholar 

  • Norberg, P., Nilsson, R. and Liljenberg, C. 1991. Alterations in lipid composition and phase behaviour of oat root plasma membranes after induction of dehydration tolerance. pp. 65–68. In: Eds. P. Quinn and J.L. Harwood. Plant Lipid Biochemistry. Structure and Utilization. Portland Press, London and Colchester.

    Google Scholar 

  • Olson, E.N. 1988. Modification of proteins with covalent lipids. Prog. Lip. Res. 27: 177–98.

    Article  CAS  Google Scholar 

  • Palmgren, M.J., Sommarin, M. Ulskov, P. and Jorgensen, P.J. 1988. Modulation of plasma membrane H+ATPase from oat roots by lysophosphatidyl-choline free fatty acids and phospholiphase A2. Physiol. Plant 74: 11–19.

    Article  CAS  Google Scholar 

  • Rawyler, A., Meylan, M. and Siegenthaler, P.A. 1990. MGDG synthesis in intact chloroplasts and its relations with lipid asymmetry in thylakoid membranes. In: Eds. P. Quinn and J.L. Harwood. Plant Lipid Biochemistry. Structure and Utilization. Portland Press, London and Colchester (In press).

    Google Scholar 

  • Reinhold, L., Kaplan, A. 1984. Membrane transport of sugars and amino acids. An. Rev. Plant Phys. 35: 48–83.

    Google Scholar 

  • Ricker, J., Spener, F. and Kader, J.C. 1985. A phospholipid transfer protein that binds long-chained fatty acids. FEBS Lett. 180: 29–32.

    Article  Google Scholar 

  • Scherer, G.F.E., Martiny-Baron, G. and Stoffel, B. 1988. A new set of regulatory molecules in plants. A plant phospholipid similar to platelet-activating factor stimulates protein kinase and proton translocating ATPase in membrane vesicles. Planta 175: 241–53.

    Article  CAS  Google Scholar 

  • Schlame, M. and Beyer, K. 1991. The molecular species of mitochondrial cardiolipin. pp. 17–19. In: Eds. P. Quinn and J.L. Harwood. Plant Lipid Biochemistry. Structure and Utilization. Portland Press, London and Colchester.

    Google Scholar 

  • Schroeder, F. 1984. Role of membrane asymmetry in aging. Neurobiol. Aging 15: 323–33.

    Article  Google Scholar 

  • Seignuret, M., Zachowski, A., Hermann, A. and Devaux, P. 1984. Asymmetric lipid fluidity in human erythrocyte membrane: new spin-label evidence. Biochem. 23: 4271–5.

    Article  Google Scholar 

  • Siegenthaler, P.A. 1982. Transmembrane distribution and function of lipids in spinach thylakoid membranes: rationale of the enzymic modification method. pp. 351–8. In: Eds. J. Wintermans and P. Kuiper. Biochemistry and Metabolism of Plant Lipids. Elsevier, Amsterdam.

    Google Scholar 

  • Stafford, R.E. and Dennis, E.A. 1988. Lysophospholipids as surfactants. Colloids and Surfaces 30: 47–64.

    Article  CAS  Google Scholar 

  • Storch, J. and Kleirifeld, A.M. 1985. The lipid structure of biological membranes. TIBS 10: 418–21.

    CAS  Google Scholar 

  • Takashima, K., Watanabe, S., Yamada, M. and Mayima, G. 1987. The amino-acid sequence of the non-specific lipid transfer protein from germinated castor bean embryos. Biochim. Biophys. Acta 870: 248–55.

    Article  Google Scholar 

  • Tasaka, Y., Nishida, J., Higashi, S., Beppu, T. and Murata, N. 1990. Fatty acid composition of phosphatidylglycerols in relation to chilling sensitivity of woody plants. Plant Cell. Physiol. 31: 545–50.

    CAS  Google Scholar 

  • Unitt, M.D. and Harwood, J.L. 1982. Lipid topography of thylakoid membranes. pp. 359–62. In: Eds. J. Wintermans and P. Kuiper. Biochemistry and Metabolism of Plant Lipids. Elsevier, Amsterdam.

    Google Scholar 

  • van Breeman, R.B., Wheeler, J.J. and Boss, W.I. 1990. Identification of carrot inositol phospholipide by fast atom bombardment IUS. Lipids 25: 328–34.

    Article  Google Scholar 

  • van Paridon, P.A., de Kruijff, B., Ouwerkerk, R. and Wirtz, E.W.A. 1986. Polyphosphoinositides undergo charge neutralization in the physiological pH range; a 31P NMR study. Biochim. Biophys. Acta 877: 216–9.

    Article  PubMed  Google Scholar 

  • Weltzien, H.V. 1979. Cytolytic and membrane perturbing properties of lysophosphatidylcholine. Biochim. Biophys. Acta 559: 259–87.

    Article  PubMed  CAS  Google Scholar 

  • Wolfenden, J. and Wellburn, A.R. 1991. Effects of summer ozone on membrane lipid composition in Norway spruce (Picea-Abies). New Phytol. 118: 323–30.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Leshem, Y.Y. (1992). Membrane glycerolipid and sphingolipid headgroups. In: Plant Membranes. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-2683-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-2683-2_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4096-1

  • Online ISBN: 978-94-017-2683-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics