Skip to main content

Part of the book series: Water Science and Technology Library ((WSTL,volume 30))

Abstract

There is a multitude of methods for estimating parameters of hydrologic frequency models. Some of the popular methods used in hydrology include (1) method of moments (Nash, 1959; Dooge, 1973; Harley, 1967; O’Meara, 1968; Van de Nes and Hendriks, 1971; Singh, 1988); (2) method of probability weighted moments (Greenwood, et al., 1979); (3) method of mixed moments (Rao, 1980, 1983; Shrader, et al., 1981); (4) L-moments (Hosking, 1986, 1990, 1992); (5) maximum likelihood estimation (Douglas, et al., 1976; Sorooshian, et al., 1983; Phien and Jivajirajah, 1984); and (6) least squares method (Jones, 1971; Snyder, 1972; Bree, 1978a, 1978b). A brief review of these methods is given here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ashkar, F., Bobee, B., Leroux, D. and Morisette, D., 1988. The generalized method of moments as applied to the generalized gamma distribution. Stochastic Hydrology and Hydraulics, Vol. 2, pp. 161–174.

    Article  Google Scholar 

  • Bobee, B., Perreault, L. and Ashkar, F., 1993. Two kinds of moment diagrams and their applications in hydrology. Stochastic Hydrology and Hydraulics, Vol. 7, pp. 41–65.

    Article  Google Scholar 

  • Bree, T., 1978a. The stability of parameter estimation in the linear model. Journal of Hydrology, Vol. 37, pp. 47–66.

    Article  Google Scholar 

  • Bree, T., 1978b. The general linear model with prior information. Journal of Hydrology, Vol. 39, pp. 113–127.

    Article  Google Scholar 

  • Clarke, R.T., 1996. Residual maximum likelihood (REML) methods for analysing hydrological data series. Journal of Hydrology, Vol. 182, pp. 277–295.

    Article  Google Scholar 

  • Cohen, A.C. and Whitten, B., 1982. Modified maximum likelihood and modified moment estimators for the three-parameter Weibull distribution. Communications in Statistics-Theoretical Methods, Vol. 11, o. 23, pp. 2631–2656.

    Article  Google Scholar 

  • Cunnane, C., 1989. Statistical distribution for flood frequency analysis. WMO Operational Hydrology Report No-33, WMO-No 718, Geneva, Switzerland.

    Google Scholar 

  • Diskin, M.H., 1967. A Laplace transform proof of the theorem of moments for the instantaneous unit hydrograph. Water Resources Research, Vol. 3, No. 2, pp. 385–388.

    Article  Google Scholar 

  • Diskin, M.H. and Boneh, A., 1968. Moments of the input, output, and impulse response functions of linear systems about arbitrary points. Water Resources Research, Vol. 4, No. 4, pp. 727–735.

    Google Scholar 

  • Dooge, J.C.I., 1973. Linear theory of hydrologic systems. Technical Bulletin No. 1468, 327 pp., Agricultural Research Service, U.S. department of Agriculture, Washington, D.C.

    Google Scholar 

  • Douglas, J.R., Clarke and Newton, S.G., 1976. The use of likelihood functions to fit conceptual models with more than one dependent variable. Journal of Hydrology, Vol. 29, pp. 181198.

    Google Scholar 

  • Duan, Q., Sorooshian, S. And Gupta, V.K., 1988. A maximum likelihood criterion for use with data collected at unequal time intervals. Water Resources Research, Vol. 24, No. 7, pp. 1163–1173.

    Google Scholar 

  • Dubey, S.D., 1967. Some percentile estimators for Weibull parameters. Technometrics, Vol. 9, pp. 119–129.

    Article  Google Scholar 

  • Fiering, M.B. 1982b. Alternative indices of resilience. Water Resources Research, Vol. 18, No. 1, pp. 33–39.

    Article  Google Scholar 

  • Field, C., 1985. Concepts of robustness. Chapter 15 in A Celebration of Statistics, edited by A.C. Atkinson and S.E. Fienberg, pp. 369–375, Springer-Verlag, Heidelberg, Germany

    Google Scholar 

  • Fiering, M.B. 1982 a. A screening model to quantify resilience. Water Resources Research, Vol. 18, No. 1, pp. 27–32.

    Google Scholar 

  • Fiering, M.B. 1982c. Estimates of resilience indices by simulation. Water Resources Research, Vol. 18, No. 1, pp. 41–50.

    Article  Google Scholar 

  • Fiering, M.B. 1982d. Estimating resilience by canonical analysis. Water Resources Research, Vol. 18, No. 1, pp. 51–57.

    Article  Google Scholar 

  • Greenwood, J.A., Landwehr, J.M., Matalas, N.C. and Wallis, J.R., 1979. Probability-weighted moments: definition and relation to parameters of several distributions expressible in inverse form. Water Resources Research,Vol. 15, pp. 1049–1054.

    Google Scholar 

  • Gupta, V.K. and Sorooshian, S., 1983. Uniqueness and observability of conceptual rainfall-runoff model parameters: The percolation process examined. Water Resources Research, Vol. 19, No. 1, pp. 29–276.

    Article  Google Scholar 

  • Gupta, V.K. and Sorooshian, S., 1985. The rel;ationship between data and the precision of parameter estimates of hydrologic models. Journal of Hydrology, Vol. 81, pp. 57–77.

    Article  Google Scholar 

  • Haktanir, T., 1996. Probability-weighted moments without plotting position formula. Journal of Hydrologic Engineering, Vol. 1, No. 2, pp. 89–91.

    Article  Google Scholar 

  • Harley, B.M., 1967. Linear routing in uniform open channels. M. Eng. Sc. Thesis, University College, Cork, Ireland.

    Google Scholar 

  • Hosking, J.R.M., 1985. A correction for the bias of maximum likelihood estimators of Gumbel parameters-comment. Journal of Hydrology, Vol. 78, pp. 393–396.

    Article  Google Scholar 

  • Hosking, J.R.M., 1986. The theory of probability-weighted moments. Technical Report RC 12210, Mathematics, 160 pp., IBM Thomas J. Watson Research Center, Yorktown Heights, New York.

    Google Scholar 

  • Hosking, J.R.M., 1992. Moments or L-moments. An example comparing two measures of distributional shape. American Statistician, Vol, 46, No. 3, pp. 186–189.

    Google Scholar 

  • Hosking, J.R.M., 1990. L-Moments: Analysis and estimation of distribution using linear combination of order statistics. Journal of Royal Statistical Society, Series B, Vol. 52, No. 1, pp. 105–124.

    Google Scholar 

  • Hosking, J.R.M. and Wallis, J.R., 1991. Some statistics useful in regional frequency analysis. Research Report RC 1709623 AP, IBM Research Division, T.J. Watson Research Center, Yorkstown Heights, N.Y.

    Google Scholar 

  • Hosking, J.R.M. and Wallis, J.R., 1987. An “index-flood” procedure for regional rainfall frequency analysis. EOS Transactions, AGU, Vol. 68, pp. 312.

    Google Scholar 

  • Hosking, J.R.M. and Wallis, J.R., 1995. A comparison of unbiased and plotting position estimators of L moments. Water Resources Research, Vol. 31, No. 8, pp. 2019–2025.

    Article  Google Scholar 

  • Jones, L.E., 1971. Linearizing weight factors for least quares fitting. Journal of the Hydraulics Division, ASCE, Vol. 97, No. HY5, pp. 665–675.

    Google Scholar 

  • Johnson, N.L. and Kotz, S., 1985. Moment ratios. Encyclopedia of Statistical Sciences, Vol. 1, pp. 603–604.

    Google Scholar 

  • Kappenman, R.F., 1985. Estimation for the three-parameter Weibull, lognormal, and gamma distributions. Computational Statistics and Data Analysis, Vol. 3, No. 1, pp. 11–23.

    Article  Google Scholar 

  • Kitanidis, P. K., 1986. Parameter uncertainty in estimation of spatial functions: Bayesian analysis. Water Resources Research, Vol. 22, No. 4, pp. 499–507.

    Article  Google Scholar 

  • Kitanidis, P.K. and Lane, R.W., 1985. Maximum likelihood parameter estimation of hydrologic spatial processes by the Gauss-Newton method. Journal of Hydrology, Vol. 79, pp. 53–71.

    Article  Google Scholar 

  • Kline, D.E. and Bender, D.A., 1990. Maximum likelihood estimation for shifted Weull and lognormal distributions. Transactions in Agriculture, Vol. 33, No. 1, pp. 330–335.

    Google Scholar 

  • Koch, S.P., 1991. Bias error in maximum likelihood estimation. Journal of Hydrology, Vol. 122, pp. 289–300.

    Article  Google Scholar 

  • Kroll, C.N. and Stedinger, J.R., 1996. Estimation of moments and quantiles using censored data Water Resources Research, Vol. 32, No. 4, pp. 1005–1012.

    Article  Google Scholar 

  • Kuczera, G., 198a. Combining site-specific and regional information: An empirical Bayes approach. Water Resources Research, Vol. 18, No. 2, pp. 306–314.

    Google Scholar 

  • Kucczera, G., 1982b. Robust flood frequency models. Water Resources Research, Vol. 18, No. 2, pp. 315–324.

    Article  Google Scholar 

  • Kuczera, G., 1982c. On the relationship between the reliability of parameter estimates and hydrologic time series data used in calibration. Water Resources Research, Vol. 18, No. 1, pp. 146–154.

    Article  Google Scholar 

  • Kuczera, G., 1983a. Improved parameter inference in catchment models: 1. Evaluating parameter uncertainty. Water Resources Research, Vol. 19, No. 5, pp. 1151–1162.

    Article  Google Scholar 

  • Kuczera, G., 1983b. Improved parameter inference in catchment models: 2.Combining different kinds of hydrologic data and testing their compatibity. Water Resources Research, Vol. 19, No. 5, pp. 1163–1172.

    Article  Google Scholar 

  • Landwehr, J.M., Matalas, N.C. and Wallis, J.R., 1979a. Probability-weighted moments compared with some traditional techniques in estimating Gumbel parameters and quantiles. Water Resources Research, Vol. 15, pp. 1055–1064.

    Article  Google Scholar 

  • Landwehr, J.M., Matalas, N.C. and Wallis, J.R., 1979b. Estimation of parameters and quantiles of Wakeby distributions. Water Resources Research, Vol. 15, pp. 1361–1379; correction, p. 1672.

    Google Scholar 

  • Natale, L. and Todini, E., 1974. A constrained parameter estimation technique for linear models in hydrology. Publication No. 13, Institute of Hydraulics, University of Pavia, Pavia, Italy.

    Google Scholar 

  • Nash, J.E., 1959. A systematic determination of unit hydrograph parameters. Journal of Geophysical Research, Vol. 64, No. 1, pp. 111–115.

    Article  Google Scholar 

  • O’meara, W.A., 1968. Linear routing of lateral inflow in uniform open channels. M.Eng. Sc. Thesis, University College, Cork, Ireland.

    Google Scholar 

  • Phien, H.N. and Jivajirajah, T., 1984. Fitting the SB curve by the method of maximum likelihood. Journal of Hydrology, Vol. 67, pp. 67–75.

    Article  Google Scholar 

  • Rao, A.R. and Hamed, K.H., 1994. Frequency analysis of upper Cauvert flood data by L-moments. Water Resources Management, Vol. 8, pp. 183–201.

    Article  Google Scholar 

  • Rao, A.R. and Hamed, K.H., 1997. Regional frequency analysis of Wabash River flood data by L-moments. Journal of Hydrologic Engineering, Vol. 2, No. 4, pp. 169–179.

    Article  Google Scholar 

  • Rao, A.R. and Mao, L.T., 1987. An investigation of the instrumental varaible-approximate maximum likelihood method of modeling and forecasting daily flows. Water Resources Manageemnt, Vol. 1, pp. 79–106.

    Article  Google Scholar 

  • Rao, D.V., 1980. Log-Pearson type 3 distribution: method of mixed moments. Journal of Hydraulics Division, ASCE, Vol. 106, No. HY6, pp. 999–1019.

    Google Scholar 

  • Rao, D.V., 1983. Estimating log Pearson parameters by mixed moments. Journal of Hydraulic Engineering, Vol. 109, No. 8, pp. 1118–1132.

    Article  Google Scholar 

  • Shrader, M.L., Rawls, W.J., Snyder, W.M. and McCuen, R.H., 1981. Flood peak regionalization using mixed-mode estimation of the parameters of the log-normal distribution. Journal of Hydrology, Vol. 52, pp. 229–237.

    Article  Google Scholar 

  • Singh, V. P., 1988. Hydrologic Systems, Vol.]: Rainfall-Runoff Modeling. Prentice hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  • Snyder, W.M., 1972. Fitting of distribution functions by nonlinear least squares. Water Resources Research, Vol. 8, No. 6, pp. 1423–1432.

    Article  Google Scholar 

  • Sorooshian, S. And Gupta, V.K., 1983. Automatic calibration of conceptual rainfall-runoff models: the question of parameter observability and uniqueness. Water Resources Research, Vol. 19, No. 1, pp. 260–268.

    Google Scholar 

  • Sorooshian, S., Gupta, V.K. and Fulton, J.L., 1983. Evaluation of maximum likelihood parameter estimation techniques for conceptual rainfall-runof models: Influence of calibration data variability and length on model credibility. Water Resources Research, Vol. 19, No. 1, pp. 251–259.

    Article  Google Scholar 

  • Stedinger, J.R. and Tasker, G.D., 1985. Regional hydrologic analysis: 1. Ordinary, weighted and generalized least squares compared. Water Resources Research, Vol. 21, No. 9, pp. 14211432.

    Google Scholar 

  • Troutman, B.M., 1985a. Errors and parameter estimation in precipation-runoff modeling: Theory. Water Resources Research, Vol. 21, No. 8, pp. 1195–1213.

    Article  Google Scholar 

  • Troutman, B.M., 1985b. Errors and parameter estimation in precipation-runoff modeling: 2. Case study. Water Resources Research, Vol. 21, No. 8, pp. 1214–1222.

    Article  Google Scholar 

  • Van des Nes, T.J. and Hendriks, M.H., 1971. Analysis of a linear distributed modelof surface model. Report No. 1, Laboratory of Catchment Hydraulics and Hydrology, Agricultural University of Wageningen, The Netherlands.

    Google Scholar 

  • Vogel, R.M.S. and Fennessey, N.M., 1993. L-moment diagrams should replace product moment diagrams. Water Resources Research, Vol. 29, No. 6, pp. 1745–1752.

    Google Scholar 

  • Vogel, R.M. and Wilson, I., 1996. Probability distribution of annual maximum, mean, and minimum streamflows in the United States. Journal of Hydrologic Engineering, Vol. 1, No. 2, pp. 69–76.

    Article  Google Scholar 

  • Vogel, R.M.S., Thomas W.O., and McMahon, T.A., 1993a. Flood flow frequency model selection in southwestern U.S.A. Journal of Water Resources Planning and Management, ASCE, Vol. 119, No. 3, pp. 353–366

    Google Scholar 

  • Vogel, R.M.S., McMahon, T.A., and Chiew, F.H.S., 1993b. Flood flow model selection in Australia. Journal of Hydrology, Vol. 146, pp. 421–450.

    Article  Google Scholar 

  • Wang, S.X. and Adams, B.J., 1984. Parameter estimation infloodfrequency analysis. Publication 84–02, Department of Civil Engineering, University of Toronto, Toronto, Canada.

    Google Scholar 

  • Wang, Q.J., 1997. LH moments for statistical analysis of extreme events. Water Resources Research, Vol. 33, No. 12, pp. 2841–2848.

    Article  Google Scholar 

  • Williams, B.J. and Yeh, W.W.-G., 1983. Parameter estimation in rainfall-runoff models. Journal of Hydrology, Vol. 63, pp. 373–393.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Singh, V.P. (1998). Methods of Parameter Estimation. In: Entropy-Based Parameter Estimation in Hydrology. Water Science and Technology Library, vol 30. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1431-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-1431-0_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5089-2

  • Online ISBN: 978-94-017-1431-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics