Skip to main content

Effects of Mycorrhizas on Plant Tolerance to Diseases

Mycorrhiza-disease interactions

  • Chapter
Arbuscular Mycorrhizas: Physiology and Function

Abstract

The mycorrhizal association with the roots of land plants has existed for hundreds of millions of years and logically includes associations with other functional groups of soil microbes. Disease is rare in undisturbed ecosystems compared to disturbed agroecosystems where disease can often cause serious economic loss. It is logical to surmise that mycorrhizas played a significant role in somehow protecting plants against pathogen invasion, but the demonstration of that phenomenon experimentally has been difficult and conclusions from published work are not possible largely because of the differences in experimental procedures, pathogens, and diseases. Many reviews on the subject have focused on the mechanisms of interaction such as (a) enhanced nutrition, (b) competition for nutrients and infection sites, (c) morphological changes, (d) changes in chemical constituents in plant tissues, (e) alleviation of abiotic stress, and (f) microbial changes in the mycorrhizosphere. Depending on the disease and the environmental situation, any or all mechanisms could be involved, but changes in microbial populations in the mycorrhizosphere seems to be the best explanation, yet the least studied. This chapter focuses on this mechanism by defining the mycorrhizosphere paradigm where soil microbes are influenced by both rhizodeposition of substrates from roots as well as exudation from arbuscular mycorrhizal (AM) fungal hyphae. The microbial populations in the mycorrhizosphere can change dynamically over time and are influenced by what microbes are present in the soil or substrate, the formation of the AM association intraradically as well as extraradically, and the process of selective enrichment of specific functional groups of microbes, including those that can contribute to the antagonistic potential against root pathogens. Documentation is provided to demonstrate that the numbers and proportion of bacterial antagonists against several root pathogens increase when the AM association is established. The antagonistic potential index derived from in vitro antagonism tests is greater than that of the non-AM plant rhizosphere soil as a result of selective enrichment of bacterial antagonists from the bulk soil by root and hyphal exudation. The data suggest that early establishment of the AM association by inoculation of transplants or in-furrow application that can enrich for antagonists is a management strategy that can contribute to disease suppression under agricultural conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Afek, U. and Menge, J.A. 1990. Effect of Pythium ultimum and metalaxyl treatments on root length and mycorrhizal colonization of cotton, onion, and pepper. Plant Dis. 74: 117–120.

    Article  CAS  Google Scholar 

  2. Ames, R. N., Reid, C.P.P. and Ingham, E.R. 1984. Rhizosphere bacterial population responses to root colonization by a vesicular-arbuscular mycorrhizal fungus. New Phytol 96: 555–563.

    Article  Google Scholar 

  3. Andrade, G. 1995. Interaccion de rizobacteria dijadoras de nitrogen no simbioticas con hongas micorrhizicos en la rizospere de maiz crecidas en miniirizotron (Interactions between nitrogen-fixing rhizobacteria and mycorrhizal fungi in the rhizosphere of corn grown in a minirhizotron system). Ph.D. Thesis. Univ. Granada, Spain. p. 117.

    Google Scholar 

  4. Andrade, G., Mihara, K.L., Linderman, R. G. and Bethlenfalvay, G.J. 1997. Bacteria from rhizosphere and hyphosphere soils of different arbuscular-mycorrhizal fungi. Plant Soil. 192: 71–79.

    Article  CAS  Google Scholar 

  5. Andrade, G., Linderman, R. G. and Bethlenfalvay, G. J. 1998. Bacterial associations with the mycorrhizosphere and hyphosphere of the arbuscular mycorrhizal fungus, Glomus mosseae. Plant Soil. 202: 79–87.

    Article  CAS  Google Scholar 

  6. Andrade, G., Mihara, K.L., Linderman, R. G. and Bethlenfalvay, G.J. 1998. Soil aggregation status and rhizobacteria in the mycorrhizosphere. Plant Soil. 202: 89–96.

    Article  CAS  Google Scholar 

  7. Azcon-Aguilar, C. and Barea, J.M. 1996. Arbuscular mycorrhizas and biological control of soil-borne plant pathogens–An overview of the mechanisms involved. Mycorrhiza. 6: 457–464.

    Article  Google Scholar 

  8. Bago, B., Vierheilig, H., Piche, Y. and Azcon-Aguilar, C. 1996. Nitrate depletion and pH changes induced by the extraradical mycelium of the arbuscular mycorrhizal fungus Glomus intraradices grown in monoxenic culture. New Phytol. 133: 273–280.

    Article  Google Scholar 

  9. Bagyaraj, D.J. 1984. Biological interactions with VA mycorrhizal fungi. In: VA Mycorrhiza. L. L. Conway Powell and D. J. Bagyaraj, eds. CRC Press, Boca Raton, FL. pp. 131–153.

    Google Scholar 

  10. Baltruschat, H. and Schoenbeck, F. 1972. Untersuchungen uber den einfluiss der endotrophen mycorrhiza auf die chlamydosporen bildung von Thielaviopsis basicola in Tabakwurzeln. Phytopathol. Z. 74: 358–361.

    Article  Google Scholar 

  11. Baltruschat,H. and Schoenbeck, F. 1975. Untersuchungen uber den Einfluiss der endotrophen Mycorrhiza auf den Befall von Tabak mit Thielaviopsis basicola. Phytopathol. Z. 84: 172–188.

    Article  CAS  Google Scholar 

  12. Bansal, M. and Mukerji, K. G. 1994. Positive correlation between AM-induced changes in root exudation and mycorrhizosphere mycoflora. Mycorrhiza 5. 39–44.

    Google Scholar 

  13. Bartschi, H., Gianinazzi-Pearson, V. and Vegh, I. 1981. Vesicular-arbuscular mycorrhiza formation and root rot disease (Phytophthora cinnamomi) development in Chamaecyparis lawsoniana. Phytopathol. Z. 102: 213–218.

    Article  Google Scholar 

  14. Becker, W.N. 1976. Quantification of onion vesicular-arbuscular mycorrhizae and their resistance to Pyrenochaeta terrestris. PhD Thesis, Univ. Illinois.

    Google Scholar 

  15. Benhamou, N., Fortin, J. A., Hamel, C., St-Arnaud, M. and Shatilla, A. 1994. Resistance responses of mycorrhizal Ri T-DNA-transformed carrot roots to infection by Fusarium oxysporum f sp. chtysanthemi. Phytopathol. 84: 958–968.

    Article  CAS  Google Scholar 

  16. Bethlenfalvay, G.J. and Linderman, R.G. eds 1992. Mycorrhizae in Sustainable Agriculture, ASA Spec. Publ. No. 54., Amer. Soc. Agronomy Press, Madison, WI.

    Google Scholar 

  17. Boddy, R.M., Urquiaga, S., Reis, V. and Dobereiner, J. 1991. Biological nitrogen fixation associated with sugar cane. Plant Soil. 137: 111–117.

    Article  Google Scholar 

  18. Caron, M. 1989. Potential use of mycorrhizae in control of soil-borne diseases. Can. J. Plant Pathol. 11: 177–179.

    Article  Google Scholar 

  19. Caron, M., Fortin, J.A. and Richard, C. 1985. Influence of substrate on the interaction of Glomus intraradices and Fusarium oxysporum f sp. radicis-lycopersici on tomatoes. Plant Soil. 87: 233–239.

    Article  Google Scholar 

  20. Caron, M., Fortin, J.A. and Richard, C. 1986. Effect of Glomus intraradices on infection by Fusarium oxysporum f sp. radicis-lycopersici on tomatoes over a 12-week period. Can. J. Bot. 64: 552–556.

    Article  Google Scholar 

  21. Caron, M., Fortin, J.A. and Richard, C. 1986. Effect of inoculation sequence on the interaction between Glomus intraradices and Fusarium oxysporum f. sp. radicis-lycopersici in tomatoes. Can. J. Plant Pathol. 8: 12–16.

    Article  Google Scholar 

  22. Caron, M., Richard, C. and Fortin, J.A. 1986. Effect of phosphorus concentration and Glomus intraradices on Fusarium crown and root rot of tomatoes. Phytopathology 76: 942–946.

    Article  CAS  Google Scholar 

  23. Cook, R.J. and Baker, K.F. 1983. The nature and practice of biological control of plant pathogens. APS Press, St. Paul, MN

    Google Scholar 

  24. Cooper, K.M. and Grandison, G.S. 1986. Interaction of vesicular-arbuscular mycorrhizal fungi and root-knot nematode on cultivars of tomato and white clover susceptible to Meloidogyne hapla. Ann. Appl. Biol. 108: 555–565.

    Article  Google Scholar 

  25. Cooper, K.M. and Grandison, G.S. 1987. Effects of vesicular-arbuscular mycorrhizal fungi on infection of tamarillo (Cyphomandra betacea) by Meloidogyne incognita in fumigated soil. Plant Dis. 71: 1101–1107.

    Article  Google Scholar 

  26. Cordier, C., Pozo, M.J., Barea, J. M., Gianinazzi S and Gianinazzi-Pearson, V. 1998. Cell defense responses associated with localized and systemic resistance to Phytophthora parasitica induced in tomato by an arbuscular mycorrhizal fungus. Molecular Plant-Microbe Interactions 11: 1017–1028.

    Article  CAS  Google Scholar 

  27. Curl, E. A. and Truelove, B. 1986. The Rhizosphere. Springer-Verlag, Berlin.

    Book  Google Scholar 

  28. Dassi, B., Dumas-Guado, E. and Gianinazzi, S. 1998. Do pathogenesis-related (PR) proteins play a role in bioprotection of mycorrhizal tomato roots towards Phytophthora parasitica? Physiol. Molec. Plant Pathol. 52: 167–183.

    Article  CAS  Google Scholar 

  29. Dehne, H-W. 1982. Interaction between vesicular-arbuscular mycorrhizal fungi and plant pathogens. Phytopathol. 72: 1115–1119.

    Google Scholar 

  30. Dehne, H-W., Schoenbeck, F. and Baltruschat, H. 1978. Untersuchungen zum Einfluss der endotrophen Mycorrhiza auf Pflanzenkrankheiten. 3. Chitinase-aktivitat und Ornithinzyklus. (The influence of endotrophic mycorrhiza on plant diseases. 3. Chitinase-activity and ornithine-cycle). Z. Pflkrankh. 85: 666–678.

    CAS  Google Scholar 

  31. Dehne, H -W. and Schoenbeck, F. 1979. Untersuchungen zum einfluss der endotrophen mycorrhiza auf pflanzenkrankheiten II. Phenolstoffwechsel und lignifizierung. Phytopathol. Z. 95: 210–216.

    Article  CAS  Google Scholar 

  32. Dumas-Gaudot, E., Furlan, V., Grenier, J. and Asselin, A. 1992. New acidic chitinase isoforms induced in tobacco roots by vesicular-arbuscular mycorrhizal fungi. Mycorrhiza. 1: 133–136.

    Article  CAS  Google Scholar 

  33. Filion,M., St-Arnaud, M. and Fortin, J.A. 1999. Direct interaction between the arbuscular mycorrhizal fungus Glomus intraradices and different rhizosphere microorganims. New Phytol. 141: 525–533.

    Article  Google Scholar 

  34. Fitter, A. H. and Garbaye, J. 1994. Interactions between mycorrhizal fungi and other soil organisms. Plant Soil. 159: 123–132.

    Google Scholar 

  35. Forster, S. M. and Nicolson, T. H. 1981. Aggregation of sand from a maritime embryo sand dune by microorganisms and higher plants. Soil Biol. Biochem. 13: 199–203.

    Article  Google Scholar 

  36. Garland, J.L. 1996. Patterns of potential C source utilization by rhizosphere communities. Soil Biol. Biochem. 28: 223–230.

    Google Scholar 

  37. Graham, J.H., Leonard, R. T. and Menge, J.A. 1981. Membrane-mediated decrease in root exudation responsible for phosphorus inhibition of vesicular-arbuscular mycorrhizae formation. Plant Physiol. 68: 548–552.

    Article  PubMed  CAS  Google Scholar 

  38. Graham J H. and Menge, J. A. 1982. Influence of vesicular-arbuscular mycorrhizae and soil phosphorus on take-all disease of wheat. Phytopathol. 72: 95–98.

    Article  Google Scholar 

  39. Grandmaison, I., Olah, G.M., Van Calsteren, M-R. and Furlan, V. 1993. Characterization and localization of plant phenolics likely involved in the pathogen resistance expressed by endomycorrhizal roots. Mycorrhiza. 3: 155–164.

    Article  CAS  Google Scholar 

  40. Green, H., Larsen, J., Olsson, P.A., Jensen, D.F. and Jakobsen, I. 1999. Suppression of the biocontrol agent Trichoderma harzianum by mycelium of the arbuscular mycorrhizal fungus Glomus intraradices in root-free soil. Appl. Environ. Microbiol. 65: 1428–1434.

    PubMed  CAS  Google Scholar 

  41. Harrison, M.J. and Dixon, R. A. 1993. Isoflavonoid accumulation and expression of defense gene transcripts during the establishment of vesicular-arbuscular mycorrhizal associations in roots of Medicago truncatula. Mol. Plant Microbe Interact. 6: 643–654.

    Article  CAS  Google Scholar 

  42. Hiltner, L. 1904. Uber neuere Erlahrungen und Probleme auf dem Gebiet der bodenbakteriologie und unter besonderer Bruksichtingung der Crundungung und Brache (On recent insights and problems in the area of soil bacteriology under special consideration of the use of green manure and fallowing). Arb. Dtsch. Landwirt. Ges. 98: 59–78.

    Google Scholar 

  43. Hooker, J.E., Jaizme-Vega, M. and Atkinson, D. 1994. Biocontrol of plant pathogens using arbuscular mycorrhizal fungi. In: Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems. Gianinazzi S. and Schuepp. H., eds., Basel: Birkhduser Verlag. pp. 191–200.

    Chapter  Google Scholar 

  44. Hussey, R.S. and Roncadori, R.W. 1982. Vesicular-arbuscular mycorrhizae may limit nematode activity and improve plant growth. Plant Dis. 66: 9–14.

    Article  Google Scholar 

  45. Huber, D.M. and Watson, R.D. 1970. Effect of organic amendment on soilborne plant pathogens. Phytopathol. 60: 22–26.

    Article  Google Scholar 

  46. Ingham, R E 1988. Interactions betweeen nematodes and VA mycorrhizae. Agric. Ecosys. Environ. 24: 169–182.

    Article  Google Scholar 

  47. Isopi, R., Fabri, P., Del Gallo, M. and Puppi, G. 1995. Dual inoculation of Sorghum bicolor (L.) Moench ssp. bicolor with vesicular arbuscular mycorrhizas and Acetobacter diazotrophicus. Symbiosis. 18: 43–55.

    Google Scholar 

  48. Jalali, B. L. and Jalali, I. 1991. Mycorrhiza in plant disease control. In: Handbook of Applied Mycology. Soil and Plants. Vol. 1, Arora, D. K., Rai, B., Mukerji, K. G. and Knudsen, G. R., eds., Marcel Dekker, New York, NY. pp. 131–154.

    Google Scholar 

  49. Jakobsen, I. and Rosendahl, L. 1990. Carbon flow into soil and external hyphae from root of mycorrhizal cucumber plants. New Phytol. 115: 77–83.

    Article  Google Scholar 

  50. Kloepper, J. W., Rodriguez-Kabana, R., McInroy, J.A. and Collin, D.J. 1991. Analysis of populations and physiological characterization of microorganisms in rhizospheres of plants with antagonistic properties to phytopathogenic nematodes. Plant Soil. 136: 95–102.

    Article  Google Scholar 

  51. Linderman, R.G. 1988 Mycorrhizal interactions with the rhizosphere microflora: The mycorrhizosphere effect. Phytopathol. 78: 366–371.

    Google Scholar 

  52. Linderman, R.G. 1992. Vesicular-arbuscular mycorrhizae and soil microbial interactions. In: Mycorrhizae in Sustainable Agriculture. Bethlenfalvay, G. J. and Linderman, R. G. eds., ASA Special Publication No. 54, Madison, WI. pp. 45–70.

    Google Scholar 

  53. Linderman, R. G. 1994. Role of VAM fungi in biocontrol. In: Mycorrhizae and Plant Health. Pfleger, F. L. and Linderman, R. G., eds., APS Press, St. Paul, MN. pp. 1–26.

    Google Scholar 

  54. Linderman, R G. and Paulitz, T. C. 1990. Mycorrhizal-rhizobacterial interactions. In: Biological control of soil-borne plant pathogens. Hornby, D. ed., Wallingford: CAB International. pp. 261–283.

    Google Scholar 

  55. Lynch, J. M. and Whipps, J. M. 1990. Substrate flow in the rhizosphere. Plant Soil 129: 1–10.

    Article  CAS  Google Scholar 

  56. Mahaffee, W.F. and Kloepper, J.W. 1994. Application of plant growth-promoting rhizobacteria in sustainable agriculture. In: Soil Biota Management in Sustainable Farming Systems. Pankhurst C. E., Doube B. M., Gupta, V. V. S. R. and Grace, P. R., eds., Melbourne, Australia. pp. 23–31.

    Google Scholar 

  57. Marschner, H. 1995. Mineral Nutrition of Higher Plants. 2nd. Ed., Academic Press, London.

    Google Scholar 

  58. Meyer, J. and Dehne, H-W. 1986. The influence of VA mycorrhizae on biotrophic leaf pathogens. In: Physiological and genetical aspects of mycorrhizae. Proceedings of the First European Symposium on Mycorrhizae, July 1–5, 1985. Edited by National Institute of Agronomic Research, Dijon. pp. 781–786.

    Google Scholar 

  59. Meyer, J.R. and Linderman, R G 1986. Selective influence on populations of rhizosphere or rhizoplane bacteria and actinomycetes by mycorrhizas formed by Glomus fasciculatum. Soil Biol. Biochem. 18: 191–196.

    Article  Google Scholar 

  60. Miller, R.M. and Jastrow, J.D. 1992. The role of mycorrhizal fungi in soil conservation. In: Mycorrhizae in Sustainable Agriculture. Bethlenfalvay, G. J. and Linderman, R G eds., ASA Special Publication No. 54, Madison, WI. pp 29–44.

    Google Scholar 

  61. Miller, R.M. and Jastrow, J.D. 1994. Vesicular-arbuscular mycorrhizae and biogeochemical cycling. In: Mycorrhizae and Plant Health. Pfleger, F. L. and Linderman, R. G., eds, APS Press, St. Paul, MN. pp 189–212.

    Google Scholar 

  62. Morandi, D., Bailey, J. A. and Gianinazzi-Pearson, V. 1984. Isoflavonoid accumulation in soybean roots infected with vesicular-arbuscular mycorrhizal fungi. Physiol. Plant Pathol. 24: 357–364.

    Article  CAS  Google Scholar 

  63. Olsson, P.A., Baath, E., Jakobsen, I. and Soderstrom, B. 1996. Soil bacteria respond to presence of roots but not to mycelium of arbuscular mycorrhizal fungi. Soil Biol. Biochem. 28: 463–470.

    Article  CAS  Google Scholar 

  64. Oswald, E. T. and Ferchau, H. A. 1968. Bacterial associations of coniferous mycorrhizae. Plant Soil. 28: 187–192.

    Article  Google Scholar 

  65. Paula, M. A., Reis, V. M. and Dobereiner, J. 1991. Interactions of Glomus clarum with Acetobacter diazotrophicus in infection of sweet potato (Ipomoea batatas), sugarcane (Saccharum spp.), and sweet sorghum (Sorghum vulgare). Biol Fertil. Soils. 11: 111–115.

    Article  Google Scholar 

  66. Perotto, S. and Bonfante, P. 1997. Bacterial associations with mycorrhizal fungi: close and distant friends in the rhizosphere. Trends Microbiol. 5: 496–501.

    Article  PubMed  CAS  Google Scholar 

  67. Rambelli, A. 1973. The rhizosphere of mycorrhizae. In: Ectomycorrhizae. Marks, G. L. and Kozlowski, T. T., eds., Academic Press, New York, NY. pp. 299–343.

    Google Scholar 

  68. Ratnayake, M., Leonard, R. T. and Menge, J. A. 1978. Root exudation in relation to supply of phosphorus and its possible relevance to mycorrhizal formation. New Phytol. 81: 543–552.

    Article  CAS  Google Scholar 

  69. Remy, W., Taylor, T. N., Hass, H. and Kerp, H. 1994. Four hundred-million-year-old vesicular arbuscular mycorrhizae. Proc. Natl. Acad. Sci. USA. 91: 11841–11843.

    Article  PubMed  CAS  Google Scholar 

  70. Schenck, N. C. 1983. Can mycorrhizae control root diseases? Plant Dis. 65: 230–234.

    Google Scholar 

  71. Schenck, N. C. 1989. Vesicular-arbuscular mycorrhizal fungi and the control of fungal root diseases. In: Innovative Approaches to Plant Disease Control, Chet, I., ed., John Wiley & Sons, Inc., New York, NY. pp. 179–191.

    Google Scholar 

  72. Schenck, N. C. and Kellam, M. K. 1978. The influence of vesicular arbuscular mycorrhizae on disease development. Fla. Agric. Exp. Stn. Tech. Bull. 798, Gainesville, FL.

    Google Scholar 

  73. Schoenbeck, F. 1979. Endomycorrhiza in relation to plant diseases. In: Soil-Borne Plant Pathogens. Schippers, B. and Gams, W., eds., Academic Press, London, NewYork, San Francisco. pp. 271–280.

    Google Scholar 

  74. Schwab, S. M., Menge, J. A. and Leonard, R. T. 1983. Quantitative and qualitative effects of phosphorus on extracts and exudates of sudangrass roots in relation to vesicular arbuscular mycorrhiza formation. Plant Physiol. 73: 761–765.

    Article  PubMed  CAS  Google Scholar 

  75. Schwab, S. M., Leonard, R. T. and Menge, J. A. 1984. Quantitative and qualitative comparison of root exudates of mycorrhizal and nonmycorrhizal plant species. Can. J. Bot. 62: 1227–1231.

    Article  Google Scholar 

  76. Secilia, J. and Bagyaraj, D. J. 1987. Bacteria and actinomycetes associated with pot cultures of vesicular-arbuscular mycorrhizas. Can. J. Mcrobiol. 33: 1069–1073.

    Article  Google Scholar 

  77. Simon, L., Bousquet. J., Levesque, R. C. and Lalonde, M. 1993. Origin and diversification of endomycorrhizal fungi and coincidence with vascular land plants. Nature. 363: 67–69.

    Article  Google Scholar 

  78. Smith, S. E. and Read, D. J. 1997. Mycorrhizal Symbiosis. Cambridge: Academic Press.

    Google Scholar 

  79. St-Arnaud, M., Hamel, C., Caron, M. and Fortin, J. A. 1994. Inhibition of Pythium ultimum in roots and growth substrate of mycorrhizal Tagetes patula colonized with Glomus intraradices. Can. J. Plant Pathol. 16: 187–194.

    Article  Google Scholar 

  80. St-Arnaud, M., Hamel, C., Caron, M. and Fortin, J. A. 1995. Endomycorhizes VA et sensibility des plantes aux maladies: synthase de la liturature et mecanismes d’interaction potentials. In: La Symbiose mycorhizienne — Etat des connaissances. Fortin J A, Charest C and Piche Y, eds, Frelighsburg: Orbis Publishing. pp. 51–87.

    Google Scholar 

  81. Sundaresan, P., Raja, N. U. and Gunasekaran, P. 1993. Induction and accumulation of phytoalexins in cowpea roots infected with a mycorrhizal fungus Glomus fasciculatum and their resistance to fusarium wilt disease. J. Biosci. ( Bangalore ). 18: 291–301.

    Article  CAS  Google Scholar 

  82. Taylor, T. N., Ramy, W., Hass, H. and Kerp, H. 1995. Fossil arbuscular mycorrhizae from the early Devonian Mycologia. 87: 560–573.

    Google Scholar 

  83. Tisdall, J. M., Smith, S. E. and Rengasamy, P. 1997. Aggregation of soil by fungal hyphae. Austral. J. Soil Res. 35: 55–60.

    Article  Google Scholar 

  84. Vancura, V., Orozco, M. O., Grauova, O. and Prikryl, Z. 1989. Properties of bacteria in the hyphosphere of a vesicular-arbuscular mycorrhizal fungus. Agric. Ecosys. Environ. 29: 421–427.

    Article  Google Scholar 

  85. Vierheilig, H., Alt, M., Mohr, U., Boller, T. and Wiemken, A. 1994. Ethylene biosynthesis and activities of chitinase and beta-1,3-glucanase in the roots of host and non-host plants of vesicular-arbuscular mycorrhizal fungi after inoculation with Glomus mosseae. J. Plant Physiol. 143: 337–343.

    Article  CAS  Google Scholar 

  86. Volpin, H., Elkind, Y., Okon, Y. and Kapulnik, Y. 1994. A vesicular arbuscular mycorrhizal fungus (Glomus intraradix) induces a defense response in alfalfa roots. Plant Physiol. 104: 683–689.

    PubMed  CAS  Google Scholar 

  87. Wick, R. L. and Moore, L. D. 1984. Histology of mycorrhizal and nonmycorrhizal Ilex crenata ‘Hellen’ challenged by Thielaviopsis basicola. Can. J. Plant Pathol. 6: 146–150.

    Article  Google Scholar 

  88. Wright, S. F. and Upadhyaya, A. 1996. Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi. Soil Sci. 161: 575–586.

    Article  CAS  Google Scholar 

  89. Wyss, P., Boller. T, and Wiemken, A. 1989. Glyceollin production in soybean during the process of infection by Gloms mosseae and Rhizoctonia solani. Agric. Ecosyst. Environ. 29: 451–456.

    Article  Google Scholar 

  90. Zak, B. 1964. Role of mycorrhizae in root disease. Annu. Rev. Phytopathol. 2: 377–392.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Linderman, R.G. (2000). Effects of Mycorrhizas on Plant Tolerance to Diseases. In: Kapulnik, Y., Douds, D.D. (eds) Arbuscular Mycorrhizas: Physiology and Function. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0776-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0776-3_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5515-6

  • Online ISBN: 978-94-017-0776-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics