Skip to main content

Nutrient uptake

Contributions of arbuscular mycorrhizal fungi to plant mineral nutrition

  • Chapter
Arbuscular Mycorrhizas: Physiology and Function

Abstract

The colonization of plant roots by arbuscular mycorrhizal [AM] fungi can greatly affect the plant uptake of mineral nutrients. It may also protect plants from harmful elements in soil. The contribution of AM fungi to plant nutrient uptake is mainly due to the acquisition of nutrients by the extraradical mycorrhizal hyphae. The quantification of the potential of hyphae for nutrient uptake can conveniently be made in experiments with soils separated into growing zones for roots and hyphae. Many mycorrhizal fungi can transport nitrogen, phosphorus, zinc, and copper to the host plant, but other nutrients can also be taken up and translocated by the hyphae. Among the nutrients, phosphorus is often the key element for increased growth or fitness of mycorrhizal plants because phosphorus is transported in hyphae in large amounts compared to the plant phosphorus demand. In addition to the direct element uptake by hyphae, mycorrhizal colonization can also have effects on root morphology and physiology leading to indirect effects of colonization on nutrient uptake. To date, the evidence for distinct differences between nonmycorrhizal and mycorrhizal plants in the use of non-soluble nutrient sources in soil is contradictory. The understanding of physiological differences in element uptake between isolates of AM fungi remains largely descriptive. Moreover, a quantification of the actual contribution of mycorrhizal fungi to nutrient uptake of plants at different growth stages and under different environmental conditions is still difficult. Novel methodology, for example the use of stable isotopes or molecular tools, will help to focus research in the next decade on the role of mycorrhizal fungi in plant nutrient uptake under ecosystem conditions rather than in controlled experimental environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Addy, H. D., Boswell, E. P. and Koide, R. T. 1998. Low temperature acclimation and freezing resistance of extraradical VA mycorrhizal hyphae. Mycol. Res. 102: 582–586.

    Article  Google Scholar 

  2. Agerer, R., Taylor, A. F. S. and Treu, R. 1998. Effects of acid irrigation and liming on the production of fruit bodies by ectomycorrhizal fungi. Plant Soil. 199: 83–89.

    Article  CAS  Google Scholar 

  3. Al-Karaki, G. N., Al-Raddad, A. and Clark, R. B. 1998. Water stress and mycorrhizal isolate effects on growth and nutrient acquisition of wheat. J. Plant Nutr. 21: 891–902.

    Article  CAS  Google Scholar 

  4. Ames, R. N., Reid, C. P. P., Porter, L. K. and Cambardella, C. 1983. Hyphal uptake and transport of nitrogen from two 15N-labelled sources by Glomus mosseae, a vesicular-arbuscular mycorrhizal fungus. New Phytol. 95: 381–396.

    Article  Google Scholar 

  5. Augé, R. M., Duan, X., Ebel, R. C. and Stodola, A. J. W. 1994. Nonhydraulic signalling of soil drying in mycorrhizal maize. Planta. 193: 74–82.

    Article  Google Scholar 

  6. Ayling, S M., Smith, S. E., Smith, F. A. and Kolesik, P. 1997. Transport processes at the plant-fungus interface in mycorrhizal associations: physiological studies. Plant Soil. 196: 305–310.

    Article  CAS  Google Scholar 

  7. Ayling, S. M., Smith, S. E., Reid, R. J. and Smith, F. A. 1998. Changes in the wall potential of Scutellospora calospora associated with colonization ofAllium porrum roots are not accompanied by equivalent changes in the host. Can. J. Bot. 76: 153–156.

    Google Scholar 

  8. Azcón-G.-Aguilar, R., Handley, L. L. and Scrimgeour, C. M. 1998. The 815N of lettuce and barley are affected by AM status and external concentration of N. New Phytol. 138: 19–26.

    Article  Google Scholar 

  9. Bago, B., Vierheilig, H., Piché, Y. and Azcón-Aguilar, C. 1996. Nitrate depletion and pH changes induced by the extraradical mycelium of the arbuscular mycorrhizal fungus Glomus intraradices grown in monoxenic culture. New Phytol. 133: 273–280.

    Article  Google Scholar 

  10. Bago, B., Azcón-Aguilar, C., Goulet, A. and Piché, Y. 1998. Branched absorbing structures (BAS): a feature of the extraradical mycelium of symbiotic arbuscular mycorrhizal fungi New Phytol. 139: 375–388.

    Google Scholar 

  11. Bago, B., Azcón-Aguilar, C. and Piché, Y. 1998. Architecture and developmental dynamics of the external mycelium of the arbuscular mycorrhizal fungus Glomus intraradices grown under monoxenic conditions. Mycologia. 90: 52–62.

    Article  Google Scholar 

  12. Balaji, B., Ba, A. M., Larue, T. A., Tepfer, D. and Piché, Y. 1994. Pisum sativum mutants insensitive to nodulation are also insensitive to invasion in vitro by the mycorrhizal fungus, Gigaspora margarita. Plant Sci. 102: 195–203.

    Article  Google Scholar 

  13. Baon, J. B., Smith, S. E. and Alston, A. M. 1994. Growth response and phosphorus uptake of rye with long and short root hairs: Interactions with mycorrhizal infection. Plant Soil. 167: 247–254.

    Article  CAS  Google Scholar 

  14. Barker, S. J., Stummer, B., Gao, L., Dispain, I., O’Connor, P. J. and Smith, S. E. 1998. A mutant in Lycopersicon esculentum Mill. with highly reduced VA mycorrhizal colonization: isolation and preliminary characterisation. Plant J. 15: 791–797.

    Article  CAS  Google Scholar 

  15. Bermudez, M. and Azcón, R. 1996. Calcium uptake by alfalfa as modified by a mycorrhizal fungus and liming Symbiosis. 20: 175–184.

    CAS  Google Scholar 

  16. Bolan, N. S. 1991. A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants. Plant Soil. 134: 189–207.

    Article  CAS  Google Scholar 

  17. Borie, F. and Rubio, R. 1999. Effects of arbuscular mycorrhizae and liming on growth and mineral acquisition of aluminum-tolerant and aluminum-sensitive barley cultivars. J. Plant Nutr. 22: 121–137.

    Article  CAS  Google Scholar 

  18. Brandon, N. J., Shelton, H. M. and Peck, D. M. 1997. Factors affecting the early growth of Leucaena leucocephala 2. Importance of arbuscular mycorrhizal fungi, grass competition and phosphorus application on yield and nodulation of leucaena in pots. Austral. J. Exp. Agric. 37: 35–43.

    Article  Google Scholar 

  19. Caimey, J. W. G. and Ashford, A. E. 1989. Reducing activity at the root surface in Eucalyptus pilularis-Pisolithus tinctorius ectomyconhizas. Austral. J.Plant Physiol. 16: 99–105.

    Article  Google Scholar 

  20. Caimey, J. W. G. and Ashford, A. E. 1991. Release of a reducing substance by the ectomycorrhizal fungi Pisolithus tinctorius and Paxillus involutus. Plant Soil. 135: 147–150.

    Article  Google Scholar 

  21. Caimey, J. W. G. and Burke, R. M. 1998. Extracellular enzyme activities of the ericoid mycorrhizal endophyte Hymenoscyphus ericae (Read) Korf & Kernan: their likely roles in decomposition of dead plant tissue in soil. Plant Soil. 205: 181–192.

    Article  Google Scholar 

  22. Caris, C., Hördt, W., Hawkins, H.-J., Römheld, V. and George, E. 1998. Studies of iron transport by arbuscular mycorrhizal hyphae from soil to peanut and sorghum plants. Mycorrhiza. 8: 35–39.

    Article  CAS  Google Scholar 

  23. Chabot, S., Bécard, G. and Fiché, Y. 1992. Life cycle of Glomus intraradix in root organ culture. Mycologia. 84: 315–321.

    Article  Google Scholar 

  24. Chapman, P. J., Shand, C. A., Edwards, A. C. and Smith, S. 1997. Effect of storage and sieving on the phosphorus composition of soil solution. Soil Sci. Soc. Am. J. 61: 315–321.

    Article  CAS  Google Scholar 

  25. Clapp, J. P., Young, J. P. W., Merryweather, J. W. and Fitter, A. H. 1995. Diversity of fungal symbionts in arbuscular mycorrhizas from a natural community. New Phytol. 130: 259–265.

    Article  Google Scholar 

  26. Clapperton, M. J. and Reid, D. M. 1992. Effects of low-concentration sulphur dioxide fumigation and vesicular-arbuscular mycorrhizas on 14C-partitioning in Phleum pratense L. New Phytol. 120: 381–387.

    Article  CAS  Google Scholar 

  27. Clark, R. B. 1997. Arbuscular mycorrhizal adaptation, spore germination, root colonization, and host plant growth and mineral acquisition at low pH. Plant Soil. 192: 15–22.

    Article  CAS  Google Scholar 

  28. Cliquet, J. B., Murray, P. J. and Boucaud, J. 1997. Effect of the arbuscular mycorrhizal fungus Glomus fasciculatum on the uptake of amino nitrogen by Lolium perenne. New Phytol. 137: 345–349.

    Article  CAS  Google Scholar 

  29. Colpaert, J. V., Van Assche, J. A. and Luijtens, K. 1992. The growth of the extramatrical mycelium of ectomycorrhizal fungi and the growth response of Pinus sylvestres L. New Phytol. 120: 127–135.

    Article  Google Scholar 

  30. Cress, W. A., Johnson, G. V. and Barton, L. L. 1986. The role of endomycorrhizal fungi in iron uptake by Hilaria jamesii. J. Plant Nutr. 9: 147–156.

    Article  Google Scholar 

  31. Cuenca, G. and Azcón, R. 1994. Effects of ammonium and nitrate on the growth of vesicular-arbuscular mycorrhizal Erythrina poeppigiana O. I. Cook seedlings. Biol. Fertil. Soils. 18: 249–254.

    Article  Google Scholar 

  32. Daft, M. J. and Nicolson, T. H. 1966. Effect of Endogone mycorrhiza on plant growth. New Phytol. 65: 343–350.

    Article  Google Scholar 

  33. Davies Jr., F. T., Potter, J. R. and Linderman, R. G. 1992. Mycorrhiza and repeated drought exposure affect drought resistance and extraradical hyphae development of pepper plants independent of plant size and nutrient content. J. Plant Physiol. 139: 289–294.

    Article  Google Scholar 

  34. Dehn, B. and Schtiepp, H. 1989. Influence of VA mycorrhizae on the uptake and distribution of heavy metals in plants. Agr. Ecosys. Envir. 29: 79–83.

    Article  Google Scholar 

  35. Del Val, C., Barea, J. M. and Azcón-Aguilar, C. 1999. Assessing the tolerance to heavy metals of arbuscular mycorrhizal fungi isolated from sewage sludge-contaminated soils. Appl. Soil Ecol. 11: 261–269.

    Article  Google Scholar 

  36. Dexheimer, J., Gerard, J., Ayatti, H. and Ghanbaja, J. 1996. Study of origin and repartition of vacuolar granules in the hyphae of a vesicular-arbuscular endomycorrhiza. Acta Bot. Gallica. 143: 167–180.

    Google Scholar 

  37. Douds Jr., D. D., Galvez, L., Bécard, G. and Kapulnik, Y. 1998. Regulation of arbuscular mycorrhizal development by plant host and fungus species in alfalfa. New Phytol. 138: 27–35.

    Article  Google Scholar 

  38. Ebel, R. C., Stodola, A. J. W., Duan, X. and Augé, R. M. 1994. Non-hydraulic root-to-shoot signalling in mycorrhizal and non-mycorrhizal sorghum exposed to partial soil drying or root severing. New Phytol. 127: 495–505.

    Article  Google Scholar 

  39. Faber, B. A., Zasoski, R. J. and Munns, D. N. 1990. A method for measuring hyphal nutrient and water uptake in mycorrhizal plants. Can. J. Bot. 69: 87–94.

    Article  Google Scholar 

  40. Facelli, E., Facelli, J. M., Smith, S. E. and Mclaughlin, M. J. 1999. Interactive effects of arbuscular mycorrhizal symbiosis, intraspecific competition and resource availability on Trifolium subterraneum cv. Mt. Barker. New Phytol. 141: 535–547.

    Article  Google Scholar 

  41. Filion, M., St-Arnaud, M. and Fortin, J. A. 1999. Direct interaction between the arbuscular mycorrhizal fungus Glomus intraradices and different rhizosphere microorganisms New Phytol. 141: 525–533.

    Google Scholar 

  42. Frey, B. and Schtiepp, H. 1992. Transfer of symbiotically fixed nitrogen from berseem (Trifolium alexandrinum L.) to maize via vesicular-arbuscular mycorrhizal hyphae. New Phytol. 122: 447–454.

    Article  CAS  Google Scholar 

  43. Frey, B. and Schtiepp, H. 1993. Acquisition of nitrogen by external hyphae of arbuscular mycorrhizal fungi associated with Zea mays L. New Phytol. 124: 221–230.

    Article  Google Scholar 

  44. Gahoonia, T. S. and Nielsen, N. E. 1996. Variation in acquisition of soil phosphorus among wheat and barley genotypes. Plant Soil. 178: 223–230.

    Article  CAS  Google Scholar 

  45. Gange, A. C. and West, H. M. 1994. Interactions between arbuscular mycorrhizal fungi and foliar-feeding insects in Plantago lanceolata L. New Phytol. 128: 79–87.

    Article  Google Scholar 

  46. Gardes, M. and Dahlberg, A. 1996. Mycorrhizal diversity in arctic and alpine tundra: an open question. New Phytol. 133: 147–157.

    Article  Google Scholar 

  47. Gebauer, G. and Taylor, A. F. S. 1999. 15N natural abundance in fruit bodies of different functional groups of fungi in relation to substrate utilization. New Phytol. 142: 93–101.

    Google Scholar 

  48. George, E., Häussler, K.-U., Vetterlein, D., Gorgus, E. and Marschner, H. 1992. Water and nutrient translocation by hyphae of Glomus mosseae. Can. J. Bot. 70: 2130–2137.

    Article  Google Scholar 

  49. George, E., Haussler, K., Kothari, S. K., Li, X.-L. and Marschner, H. 1992. Contribution of mycorrhizal hyphae to nutrient and water uptake of plants. In: Mycorrhizas in Ecosystems, D. J. Read, D. H. Lewis, A. H. Fitter and I. J. Alexander, eds. Wallingford, Oxon, UK: CAB International. pp. 42–47.

    Google Scholar 

  50. George, E., Kothari, S. K., Li, X.-L., Weber, E. and Marschner, H. 1994. VA mycorrhiza: benefits to crop plant growth and costs. In: Expanding the Production and Use of Cool Season Food Legumes, F. J. Muehlbauer and W. J. Kaiser, eds. Dordrecht, The Netherlands: Kluwer Academic. pp. 832–846

    Chapter  Google Scholar 

  51. George, E., Römheld, V. and Marschner, H. 1994. Contribution of mycorrhizal fungi to micronutrient uptake by plants. In: Biochemistry of Metal Micronutrients in the Rhizosphere, J. A. Manthey, D. E. Crowley and D. G. Luster, eds. Boca Raton, Florida: CRC Press. pp. 93–109.

    Google Scholar 

  52. George, E., Marschner, H. and Jakobsen, I. 1995. Role of arbuscular mycorrhizal fungi in uptake of phosphorus and nitrogen from soil. Crit. Rev. Biotechnol. 15: 257–270.

    Article  Google Scholar 

  53. George, E., Gorgus, E., Schmeisser, A. and Marschner, H. 1996. A method to measure nutrient uptake from soil by mycorrhizal hyphae. In: Mycorrhizas in integrated systems from genes to plant development, C. Azcon-Aguilar and J. M. Barea, eds. Luxembourg: Office for Official Publications of the European Community. pp. 535–538.

    Google Scholar 

  54. Gerdemann, J. W. 1968. Vesicular-arbuscular mycorrhiza and plant growth. Ann. Rev. Phytopathol. 6: 397–418.

    Article  Google Scholar 

  55. Goh, T. B., Banerjee, M. R., Tu, S. H. and Burton, D. L. 1997. Vesicular arbuscular mycorrhizae-mediated uptake and translocation of P and Zn by wheat in a calcareous soil. Can. J. Plant Sci. 77: 339–346.

    Article  CAS  Google Scholar 

  56. Göttlein, A. and Blasek, R. 1996. Analysis of small volumes of soil solution by capillary electrophoresis. Soil Sci. 161: 705–715.

    Article  Google Scholar 

  57. Guissou, T., Bâ, A. M., Ouadba, J.-M., Guinko, S. and Duponnois, R. 1998. Responses of Parkia biglobosa (Jacq.) Benth, Tamarindus indica L. and Zizyphus mauritiana Lam. to arbuscular mycorrhizal fungi in a phosphorus-deficient sandy soil. Biol. Fertil. Soils. 26: 194–198.

    Article  CAS  Google Scholar 

  58. Guo, Y., George, E. and Marschner, H. 1996. Contribution of an arbuscular mycorrhizal fungus to the uptake of cadmium and nickel in bean and maize plants. Plant Soil. 184: 195–205.

    Article  CAS  Google Scholar 

  59. Hamel, C., Furlan, V. and Smith, D. L. 1991. N2-fixation and transfer in a field grown mycorrhizal corn and soybean intercrop. Plant Soil. 133: 177–185.

    Article  CAS  Google Scholar 

  60. Handley, L. L., Daft, M. J., Wilson, J., Scrimgeour, C. M., Ingleby, K. and Sattar, M. A. 1993. Effects of the ecto- and VA-mycorrhizal fungi Hydnagium carneum and Glomus clarum on the 615N and VC values of Eucalyptus globulus and Ricinus communis. Plant, Cell Environ. 16: 375–382.

    Article  CAS  Google Scholar 

  61. Harrison, M. J. 1996. A sugar transporter from Medicago truncatula: altered expression pattern in roots during vesicular-arbuscular ( VA) mycorrhizal associations. Plant J. 9: 491–503.

    Article  PubMed  CAS  Google Scholar 

  62. Harrison, M. J. and van Buuren, M. L. 1995. A phosphate transporter from the mycorrhizal fungus Glomus versiforme. Nature. 378: 626–629.

    Article  PubMed  CAS  Google Scholar 

  63. Hawkins, H.-J. and George, E. 1999. Uptake and transport of mineral nitrogen by hyphae of an arbuscular mycorrhizal fungus as affected by plant N status. Physiol. Plant. (in press):

    Google Scholar 

  64. Helyar, K. R. 1998. Efficiency of nutrient utilization and sustaining soil fertility with particular reference to phosphorus. Field Crops Res. 56: 187–195.

    Article  Google Scholar 

  65. Hetrick, B. A. D., Wilson, G. W. T. and Cox, T. S. 1992. Mycorrhizal dependence of modern wheat varieties, landraces, and ancestors. Can. J. Bot. 70: 2032–2040.

    Article  Google Scholar 

  66. Hetrick, B. A. D., Wilson, G. W. T. and Cox, T. S. 1993. Mycorrhizal dependence of modern wheat cultivars and ancestors: a synthesis. Can. J. Bot. 71: 512–518.

    Article  Google Scholar 

  67. Hetrick, B. A. D., Wilson, G. W. T. and Schwab, A. P. 1994. Mycorrhizal activity in warm-and cool-season grasses: variation in nutrient-uptake strategies. Can. J. Bot. 72: 1002–1008.

    Article  Google Scholar 

  68. Hetrick, B. A. D., Wilson, G. W. T., Gill, B. S. and Cox, T. S. 1995. Chromosome location of mycorrhizal responsive genes in wheat. Can. J. Bot. 73: 891–897.

    Article  Google Scholar 

  69. Hetrick, B. A. D., Wilson, G. W. T. and Todd, T. C. 1996. Mycorrhizal response in wheat cultivars: relationship to phosphorus. Can. J. Bot. 74: 19–25.

    Article  CAS  Google Scholar 

  70. Horton, J. L. and Hart, S. C. 1998. Hydraulic lift: a potentially important ecosystem process. Trends Ecol. Evol. 13: 232–235.

    Article  PubMed  CAS  Google Scholar 

  71. Högberg, P. 1990. 15N natural abundance as a possible marker of the ectomycorrhizal habit of trees in mixed African woodlands. New Phytol. 115: 483–486.

    Google Scholar 

  72. Högberg, P., Näsholm, T., Högbom, L. and Stahl, L. 1994. Use of 15N labelling and 15N natural abundance to quantify the role of mycorrhizas in N uptake by plants: importance of seed N and of changes in the 15N labelling of available N. New Phytol. 127: 515–519.

    Article  Google Scholar 

  73. Ibijbijen, J., Urquiaga, S., Ismaili, M, Alves, B. J. R. and Boddey, R. M. 1996. Effect of arbuscular mycorrhizas on uptake of nitrogen by Brachiaria arrecta and Sorghum vulgare from soils labelled for several years with 15N. New Phytol. 133: 487–494.

    CAS  Google Scholar 

  74. Ikram, A., Jensen, E. S. and Jakobsen, I. 1994. No significant transfer of N and P from Pueraria phaseoloides to Hevea brasiliensis via hyphal links of arbuscular mycorrhiza. Soil Biol. Biochem. 26: 1541–1547.

    Article  CAS  Google Scholar 

  75. Ivanoff, D. B., Reddy, K. R. and Robinson, S. 1998. Chemical fractionation of organic phosphorus in selected Histosols. Soil Sci. 163: 36–45.

    Article  CAS  Google Scholar 

  76. Jakobsen, I. 1995. Transport of phosphorus and carbon in VA mycorrhizas. In: Mycorrhiza.–Structure, Function, Molecular Biology and Biotechnology, A. Vanna and B. Hock, eds. Berlin, Germany: Springer. pp. 297–324.

    Google Scholar 

  77. Jakobsen, I., Abbott, L. K. and Robson, A. D. 1992. External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. 1. Spread of hyphae and phosphorus inflow into roots. New Phytol. 120: 371–380.

    Article  CAS  Google Scholar 

  78. Jarstfer, A. G., Farmer-Koppenol, P. and Sylvia, D. M. 1998. Tissue magnesium and calcium affect arbuscular mycorrhiza development and fungal reproduction. Mycorrhiza. 7: 237–242.

    Article  CAS  Google Scholar 

  79. Johansen, A., Jakobsen, I. and Jensen, E. S. 1992. Hyphal transport of 15N-labelled nitrogen by a vesicular-arbuscular mycorrhizal fungus and its effect on depletion of inorganic soil N. New Phytol. 122: 281–288.

    Article  CAS  Google Scholar 

  80. Johansen, A., Jakobsen, I. and Jensen, E. S. 1993. External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. 3. Hyphal transport of 32P and 15N. New Phytol. 124: 61–68.

    Article  CAS  Google Scholar 

  81. Johansen, A., Jakobsen, I. and Jensen, E. S. 1994. Hyphal N transport by a vesicular-arbuscular mycorrhizal fungus associated with cucumber grown at three nitrogen levels. Plant Soil. 160: 1–9.

    CAS  Google Scholar 

  82. Johansen, A., Finlay, R. D. and Olsson, P. A. 1996. Nitrogen metabolism of external hyphae of the arbuscular mycorrhizal fungus Glomus intraradices. New Phytol. 133: 705–712.

    Article  CAS  Google Scholar 

  83. Joner, E. J. and Jakobsen, I. 1995. Growth and extracellular phosphatase activity of arbuscular mycorrhizal hyphae as influenced by soil organic matter. Soil Biol. Biochem. 27: 1153–1159.

    Article  CAS  Google Scholar 

  84. Joner, E. J. and Jakobsen, I. 1995. Uptake of 32P from labelled organic matter by mycorrhizal and nonmycorrhizal subterranean clover (Trifolium subterraneum L.). Plant Soil. 172: 221–227.

    Article  CAS  Google Scholar 

  85. Joner, E. J. and Leyval, C. 1997. Uptake of 109Cd by roots and hyphae of a Glomus mosseae Trifolium subterraneum mycorrhiza from soil amended with high and low concentrations of cadmium. New Phytol. 135: 353–360.

    Article  CAS  Google Scholar 

  86. Jones, D. L. 1998. Organic acids in the rhizosphere–a critical review. Plant Soil. 205: 25–44.

    Article  CAS  Google Scholar 

  87. Jongmans, A. G., van Breemen, N., Lundström, U., van Hees, P. A. W., Finlay, R. D., Srinivasan, M., Unestam, T, Giesler, R., Melkerud, P.-A. and Olsson, M. 1997. Rock-eating fungi. Nature. 389: 682–683.

    Article  CAS  Google Scholar 

  88. Jungk, A. O. 1996. Dynamics of nutrient movement at the soil-root interface. In: Plant Roots–The Hidden Half, Y. Waisel, A. Eshel and U. Kafkafi, eds. New York, New York: Marcel Dekker. pp. 529–556.

    Google Scholar 

  89. Karagiannidis, N. and Hadjisavva-Zinoviadi, S. 1998. The mycorrhizal fungus Glomus mosseae enhances growth, yield and chemical composition of a durum wheat variety in 10 different soils. Nut. Cycl. in Agroecosys. 52: 1–7.

    Article  Google Scholar 

  90. Karandashov, V. E., Kuzovkina, I., Hawkins, H.-J. and George, E. 2000. Growth and sporulation of the arbuscular mycorrhizal fungus, Glomus caledonium,in dual culture with transformed carrot roots. Mycorrhiza. (in press):

    Google Scholar 

  91. Khalil, S., Loynachan, T. E. and Tabatabai, M. A. 1999. Plant determinants of mycorrhizal dependency in soybean. Agron. J. 91: 135–141.

    Article  Google Scholar 

  92. Kielland, K. 1994. Amino acid absorption by arctic plants: implications for plant nutrition and nitrogen cycling. Ecol. 75: 2373–2383.

    Article  Google Scholar 

  93. Killham, K. and Firestone, M. K. 1983. Vesicular arbuscular mediation of grass response to acidic and heavy metal depositions. Plant Soil. 72: 39–48.

    Article  CAS  Google Scholar 

  94. Kirk, G. J. D., George, T., Courtois, B. and Senadhira, D. 1998. Opportunities to improve phosphorus efficiency and soil fertility in miffed lowland and upland rice ecosystems. Field Crops Res. 56: 73–92.

    Article  Google Scholar 

  95. Kling, M. and Jakobsen, I. 1998. Arbuscular mycorrhiza in soil quality assessment. Ambio. 27: 29–34.

    Google Scholar 

  96. Kothari, S. K., Marschner, H. and Römheld, V. 1991. Effect of a vesicular-arbuscular mycorrhizal fungus and rhizosphere micro-organisms on manganese reduction in the rhizosphere and manganese concentrations in maize (Zea mays L.). New Phytol. 117: 649–655.

    Article  CAS  Google Scholar 

  97. Kucey, R. M. N. and Janzen, H. H. 1987. Effects of VAM and reduced nutrient availability on growth and phosphorus and micronutrient uptake of wheat and field beans under greenhouse conditions. Plant Soil. 104: 71–78.

    Article  CAS  Google Scholar 

  98. Lambert, D. H., Cole Jr., H. and Baker, D. E. 1980. The role of boron in plant response to mycorrhizal infection. Plant Soil. 57: 431–438.

    Article  CAS  Google Scholar 

  99. Lambert, D. H., Cole Jr., H. and Baker, D. E. 1980. Variation in the response of alfalfa clones and cultivars to mycorrhizae and phosphorus. Crop Sci. 20: 615–618.

    Article  CAS  Google Scholar 

  100. Lapeyrie, F., Picatto, C., Gerard, J. and Dexheimer, J. 1990. T.E.M. study of intracellular and extracellular calcium oxalate accumulation by ectomycorrhizal fungi in pure culture or in association with Eucalyptus seedlings. Symbiosis. 9: 163–166.

    Google Scholar 

  101. Larsen, J. and Jakobsen, I. 1996. Effects of a mycophagous Collembola on the symbioses between Trifolium subterraneum and three arbuscular mycorrhizal fungi. New Phytol. 133: 295–302.

    Article  Google Scholar 

  102. Leake, J. R. and Read, D. J. 1990. Proteinase activity in mycorrhizal fungi. 1. The effect of extracellular pH on the production and activity of proteinase by ericoid endophytes from soils of contrasted pH. New Phytol. 115: 243–250.

    Article  CAS  Google Scholar 

  103. Leggewie, G., Willmitzer, L. and Riesmeier, J. W. 1997. Two cDNAs from potato are able to complement a phosphate uptake-deficient yeast mutant: identification of phosphate transporters from higher plants. Plant Cell. 9: 381–392.

    PubMed  CAS  Google Scholar 

  104. Leyval, C., Turnau, K. and Haselwandter, K. 1997. Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects. Mycorrhiza. 7: 139–153.

    Article  CAS  Google Scholar 

  105. Li, X.-L., George, E. and Marschner, H. 1991. Extension of the phosphorus depletion zone in VA-mycorrhizal white clover in a calcareous soil. Plant Soil. 136: 41–48.

    Article  Google Scholar 

  106. Li, X.-L., George, E. and Marschner, H. 1991. Phosphorus depletion and pH decrease at the root-soil and hyphae-soil interfaces of VA mycorrhizal white clover fertilized with ammonium. New Phytol. 119: 397–404.

    Article  CAS  Google Scholar 

  107. Li, X.-L., Marschner, H. and George, E. 1991. Acquisition of phosphorus and copper by VA-mycorrhizal hyphae and root-to-shoot transport in white clover. Plant Soil. 136: 49–57.

    Article  CAS  Google Scholar 

  108. Li, X.-L., George, E., Marschner, H. and Zhang, J.-L. 1997. Phosphorus acquisition from compacted soil by hyphae of a mycorrhizal fungus associated with red clover (Trifolium pratense). Can. J. Bot. 75: 723–729.

    Article  CAS  Google Scholar 

  109. Linderman, R. G. 1992. Vesicular-arbuscular mycorrhizae and soil microbial interactions. In: Mycorrhizae in Sustainable Agriculture, G. J. Bethlenfalvay and R. G. Linderman, eds. Madison, Wisconsin: ASA-CSSA-SSSA. pp. 45–70

    Google Scholar 

  110. Lipson, D. A., Schadt, C. W., Schmidt, S. K. and Monson, R. K. 1999. Ectomycorrhizal transfer of amino acid-nitrogen to the alpine sedge Kobresia myosuroides. New Phytol. 142: 163–167.

    Article  CAS  Google Scholar 

  111. Liu, C., Muchhal, U. S., Uthappa, M., Kononowicz, A. K. and Raghothama, K. G. 1998. Tomato phosphate transporter genes are differentially regulated in plant tissues by phosphorus. Plant Physiol. 116: 91–99.

    Article  PubMed  CAS  Google Scholar 

  112. Liu, H., Trieu, A. T., Blaylock, L. A. and Harrison, M. J. 1998. Cloning and characterization of two phosphate transporters from Medicago truncatula roots: regulation in response to phosphate and to colonization by arbuscular mycorrhizal (AM) fungi. Mol. Plant-Microbe Interact. 11: 14–22.

    Article  PubMed  CAS  Google Scholar 

  113. Lynch, J. 1998. The role of nutrient-efficient crops in modern agriculture. J. Crop Product. 1: 241–264.

    Article  Google Scholar 

  114. Marschner, H. 1995. Mineral Nutrition of Higher Plants. London, UK: Academic Press.

    Google Scholar 

  115. Marschner, H. 1996. Mineral nutrient acquisition in nonmycorrhizal and mycorrhizal plants. Phyton-Annales Rei Botanicae Austria. 36: 61–68.

    Google Scholar 

  116. Marschner, H. and Dell, B. 1994. Nutrient uptake in mycorrhizal symbiosis. Plant Soil. 159: 89–102.

    CAS  Google Scholar 

  117. Marschner, P. and Crowley, D. E. 1996. Root colonization of mycorrhizal and nonmycorrhizal pepper (Capsicum annuum ) by Pseudomonas fluorescens 2–79RL. New Phytol. 134: 115–122.

    Article  Google Scholar 

  118. Mader, P., Vierheilig, H., Alt, M. and Wiemken, A. 1993. Boundaries between soil compartments formed by microporous hydrophobic membranes (GORE-TEXR) can be crossed by vesicular-arbuscular mycorrhizal fungi but not by ions in the soil solution. Plant Soil. 152: 201–206.

    Article  Google Scholar 

  119. Mârtensson, A. M., Rydberg, I. and Vestberg, M. 1998. Potential to improve transfer of N in intercropped systems by optimising host-endophyte combinations. Plant Soil. 205: 57–66.

    Google Scholar 

  120. Martin, F., Delaruelle, C. and Ivory, M. 1998. Genetic variability in intergenic spacers of ribosomal DNA in Pisolithus isolates associated with pine, eucalyptus and Afzelia in lowland Kenyan forests. New Phytol. 139: 341–352.

    Article  CAS  Google Scholar 

  121. Mendoza, J. and Borie, F. 1998. Effect of Glomus etunicatum inoculation on aluminum, phosphorus, calcium, and magnesium uptake of two barley genotypes with different aluminum tolerance. Corn. Soil Sci. Plant Anal. 29: 681–695.

    Article  CAS  Google Scholar 

  122. Michelsen, A. and Sprent, J. I. 1994. The influence of vesicular-arbuscular mycorrhizal fungi on the nitrogen fixation of nursery-grown Ethiopian acacias estimated by the 15N natural abundance method. Plant Soil. 160: 249–257.

    Article  CAS  Google Scholar 

  123. Michelsen, A., Schmidt, I. K., Jonasson, S., Quarmby, C. and Sleep, D. 1996. Leaf 15N abundance of subarctic plants provides field evidence that ericoid, ectomycorrhizal and non-and arbuscular mycorrhizal species access different sources of soil nitrogen. Oecologia. 105: 53–63.

    Article  Google Scholar 

  124. Michelsen, A., Quarmby, C., Sleep, D. and Jonasson, S. 1998. Vascular plant 15N natural abundance in heath and forest tundra ecosystems is closely correlated with presence and type of mycorrhizal fungi in roots. Oecologia. 115: 406–418.

    Article  Google Scholar 

  125. Miller, R. M., Hetrick, B. A. D. and Wilson, G. W. T. 1997. Mycorrhizal fungi affect root stele tissue in grasses. Can. J. Bot. 75: 1778–1784.

    Article  Google Scholar 

  126. Morel, C. and Plenchette, C. 1994. Is the isotopically exchangeable phosphate of a loamy soil the plant-available P? Plant Soil. 158: 287–297.

    Article  CAS  Google Scholar 

  127. Mosse, B. and Hepper, C. M. 1975. Vesicular-arbuscular mycorrhizal infections in root organ cultures. Physiol. Plant Pathol. 5: 215–223.

    Article  Google Scholar 

  128. Moyersoen, B., Fitter, A. H. and Alexander, I. J. 1998. Spatial distribution of ectomycorrhizas and arbuscular mycorrhizas in Korup National Park rain forest, Cameroon, in relation to edaphic parameters. New Phytol. 139: 311–320.

    Article  Google Scholar 

  129. Murphy, P. J., Langridge, P. and Smith, S. E. 1997. Cloning plant genes differentially expressed during colonization of roots of Hordeum vulgare by the vesicular-arbuscular mycorrhizal fungus Glomus intraradices. New Phytol. 135: 291–301.

    Article  CAS  Google Scholar 

  130. Näsholm, T., Ekblad, A., Nordin, A., Giesler, R., Högberg, M. and Hogberg, P. 1998. Boreal forest plants take up organic nitrogen. Nature. 392: 914–916.

    Article  Google Scholar 

  131. Nurlaeny, N., Marschner, H. and George, E. 1996. Effects of liming and mycorrhizal colonization on soil phosphate depletion and phosphate uptake by maize (Zea mays L.) and soybean (Glycine max L.) grown in two tropical acid soils. Plant Soil. 181: 275–285.

    Article  CAS  Google Scholar 

  132. Olsson, P. A., Francis, R., Read, D. J. and Söderstrom, B. 1998. Growth of arbuscular mycorrhizal mycelium in calcareous dune sand and its interaction with other soil microorganisms as estimated by measurement of specific fatty acids. Plant Soil. 201: 9–16.

    Article  CAS  Google Scholar 

  133. Pacovsky, R. S., Fuller, G. and Paul, E. A. 1985. Influence of soil on the interactions between endomycorrhizae and Azospirillum in sorghum. Soil Biol. Biochem. 17: 525–531.

    Article  Google Scholar 

  134. Pacovsky, R. S. and Fuller, G. 1988. Mineral and lipid composition of Glycine-Glomus-Bradyrhizobium symbioses. Physiol. Plant. 72: 733–746.

    Article  CAS  Google Scholar 

  135. Pate, J. S., Stewart, G. R. and Unkovich, M. 1993. 15N natural abundance of plant and soil components of a Banksia woodland ecosystem in relation to nitrate utilisation, life form, mycorrhizal status and N2-fixing abilities of component species. Plant Cell Environ. 16: 365–373.

    Article  CAS  Google Scholar 

  136. Pearson, J. N. and Jakobsen, I. 1993. Symbiotic exchange of carbon and phosphorus between cucumber and three arbuscular mycorrhizal fungi. New Phytol. 124: 481–488.

    Article  CAS  Google Scholar 

  137. Pearson, J. N. and Jakobsen, I. 1993. The relative contribution of hyphae and roots to phosphorus uptake by arbuscular mycorrhizal plants, measured by dual labelling with 3213 and 33P. New Phytol. 124: 489–494.

    Article  CAS  Google Scholar 

  138. Peat, H. J. and Fitter, A. H. 1993. The distribution of arbuscular mycorrhizas in the British flora. New Phytol. 125: 845–854.

    Article  Google Scholar 

  139. Pinochet, J., Fernandez, C., Jaizme, M. D. and Tenoury, P. 1997. Micropropagated banana infected with Meloidogyne javanica responds to Glomus intraradices and phosphorus. HortSci. 32: 101–103.

    Google Scholar 

  140. Raju, P. S., Clark, R. B., Ellis, J. R. and Maranville, J. W. 1990. Effects of species of VA-mycorrhizal fungi on growth and mineral uptake of sorghum at different temperatures. Plant Soil. 121: 165–170.

    Article  CAS  Google Scholar 

  141. Raju, P. S., Clark, R. B., Ellis, J. R. and Maranville, J. W. 1990. Mineral uptake and growth of sorghum colonized with VA mycorrhiza at varied soil phosphorus levels. J. Plant Nutr. 13: 843–859.

    Article  CAS  Google Scholar 

  142. Ravnskov, S. and Jakobsen, I. 1995. Functional compatibility in arbuscular mycorrhizas measured as hyphal P transport to the plant. New Phytol. 129: 611–618.

    Article  Google Scholar 

  143. Ravnskov, S., Larsen, J., Olsson, P. A. and Jakobsen, I. 1999. Effects of various organic compounds on growth and phosphorus uptake of an arbuscular mycorrhizal fungus. New Phytol. 141: 517–524.

    Article  CAS  Google Scholar 

  144. Read, D. J., Leake, J. R. and Langdale, A. R. 1989. The nitrogen nutrition of mycorrhizal fungi and their host plants. In: Nitrogen, Phosphorus and Sulphur Utilization by Fungi, L. Boddy, R. Marchant and D. J. Read, eds. Cambridge, UK: Cambridge University Press. pp. 181–204.

    Google Scholar 

  145. Reinhard, S., Weber, E., Martin, P. and Marschner, H. 1994. Influence of phosphorus supply and light intensity on mycorrhizal response in Pisum-Rhizobium-Glomus symbiosis. Experientia. 50: 890–896.

    Article  CAS  Google Scholar 

  146. Rengel, Z., Batten, G. D. and Crowley, D. E. 1999. Agronomic approaches for improving the micronutrient density in edible portions of field crops. Field Crops Res. 60: 27–40.

    Article  Google Scholar 

  147. Rhodes, L. H. and Gerdemann, J. W. 1978. Translocation of calcium and phosphate by external hyphae of vesicular-arbuscular mycorrhizae. Soil Sci. 126: 125–126.

    Article  CAS  Google Scholar 

  148. Richards, J. H. and Caldwell, M. M. 1987. Hydraulic lift: Substantial nocturnal water transport between soil layers by Artemisia tridentata roots. Oecologia. 73: 486–489.

    Article  Google Scholar 

  149. Rillig, M. C. and Allen, M. F. 1999. What is the role of arbuscular mycorrhizal fungi in plant-to-ecosystem responses to Elevated atmospheric CO2. Mycorrhiza. 9: 1–8.

    Article  Google Scholar 

  150. Robinson, D. and Fitter, A. 1999. The magnitude and control of carbon transfer between plants linked by a common mycorrhizal network. J. Exp. Bot. 50: 9–13.

    CAS  Google Scholar 

  151. Rosendahl, S. 1992. Influence of three vesicular-arbuscular mycorrhizal fungi (Glomaceae) on the activity of specific enzymes in the root system of Cucumis sativus L. Plant Soil. 144: 219–226.

    Article  CAS  Google Scholar 

  152. Sanders, F. E. and Tinker, P. B. 1971. Mechanism of absorption of phosphate from soil by Endogone mycorrhizas. Nature. 233: 278–279.

    Article  PubMed  CAS  Google Scholar 

  153. Sanders, I. R. and Fitter, A. H. 1992. The ecology and functioning of vesicular-arbuscular mycorrhizas in co-existing grassland species. II. Nutrient uptake and growth of vesicular-arbuscular mycorrhizal plants in a semi-natural grassland. New Phytol. 120: 525–533.

    Article  CAS  Google Scholar 

  154. Sanders, I. R., Clapp, J. P. and Wiemken, A. 1996. The genetic diversity of arbuscular mycorrhizal fungi in natural ecosystems–a key to understanding the ecology and functioning of the mycorrhizal symbiosis. New Phytol. 133: 123–134.

    Article  Google Scholar 

  155. Schellenbaum, L., Müller, J., Boller, T., Wiemken, A. and Schüepp, H. 1998. Effects of drought on nonmycorrhizal and mycorrhizal maize• changes in the pools of non-structural carbohydrates, in the activities of invertase and trehalase, and in the pools of amino acids and imino acids. New Phytol. 138: 59–66.

    Article  CAS  Google Scholar 

  156. Schreiner, R. P., Mihara, K. L., Mcdaniel, H. and Bethlenfalvay, G. J. 1997. Mycorrhizal fungi influence plant and soil functions and interactions. Plant Soil. 188: 199–209.

    Article  CAS  Google Scholar 

  157. Schweiger, P. F., Robson, A. D. and Barrow, N. J. 1995. Root hair length determines beneficial effect of a Glomus species on shoot growth of some pasture species. New Phytol. 131: 247–254.

    Article  Google Scholar 

  158. Schweiger, P. F., Thingstrup, I. and Jakobsen, I. 1999. Comparison of two test systems for measuring plant phosphorus uptake via arbuscular mycorrhizal fungi. Mycorrhiza. 8: 207–213.

    Article  CAS  Google Scholar 

  159. Scullion, J., Eason, W. R. and Scott, E. P. 1998. The effectivity of arbuscular mycorrhizal fungi from high input conventional and organic grassland and grass-arable rotations. Plant Soil. 204: 243–254.

    Article  CAS  Google Scholar 

  160. Selosse, M.-A., Jacquot, D., Bouchard, D., Martin, F. and Le Tacon, F. 1998. Temporal persistence and spatial distribution of an American inoculant strain of the ectomycorrhizal basidiomycete Zaccaria bicolor in a French forest plantation. Molec. Ecol. 7: 561–573.

    Article  CAS  Google Scholar 

  161. Shumway, D. L. and Koide, R. T. 1995. Size and reproductive inequality in mycorrhizal and nonmycorrhizal populations of Abutilon theophrasti. J. Ecol. 83: 613–620.

    Article  Google Scholar 

  162. Smith, F. A. and Smith, S. E. 1996. Mutualism and parasitism: diversity in function and structure in the “arbuscular” (VA) mycorrhizal symbiosis. Adv. Bot. Res. 22: 1–43.

    Article  Google Scholar 

  163. Smith, S. E. and Gianinazzi-Pearson, V. 1988. Physiological interactions between symbionts in vesicular-arbuscular mycorrhizal plants. Ann. Rev. Plant Physiol. Plant Molec. Biol. 39: 221–244.

    Article  CAS  Google Scholar 

  164. Smith, S. E., Gianinazzi-Pearson, V., Koide, R. and Cairney, J. W. G. 1994. Nutrient transport in mycorrhizas: structure, physiology, and consequences for efficiency of the symbiosis. Plant Soil. 159: 103–113.

    Article  CAS  Google Scholar 

  165. Smith, S. E. and Read, D. J. 1997. Mycorrhizal Symbiosis. San Diego, California: Academic Press. 605 p.

    Google Scholar 

  166. St-Arnaud, M., Hamel, C., Vimard, B., Caron, M. and Fortin, J. A. 1996. Enhanced hyphal growth and spore production of the arbuscular mycorrhizal fungus Glomus intraradices in an in vitro system in the absence of host roots. Mycol. Res. 100: 328–332.

    Article  Google Scholar 

  167. St.John, T. V. 1980. Root size, root hairs and mycorrhizal infection: a re-examination of Baylis’s hypothesis with tropical trees. New Phytol. 84: 483–487.

    Article  Google Scholar 

  168. St.John, T. V., Coleman, D. C. and Reid, C. P. P. 1983. Growth and spatial distribution of nutrient-absorbing organs: selective exploitation of soil heterogeneity. Plant Soil. 71: 487–493.

    Article  Google Scholar 

  169. Staddon, P. L. 1998. Insights into mycorrhizal colonisation at elevated CO2: a simple carbon partitioning model. Plant Soil. 205: 171–180.

    Article  CAS  Google Scholar 

  170. Stewart, G. R., Pate, J. S. and Unkovich, M. 1993. Characteristics of inorganic nitrogen assimilation of plants in fire-prone Mediterranean-type vegetation. Plant Cell Environ. 16: 351–363.

    Article  CAS  Google Scholar 

  171. Szaniszlo, P. J., Powell, P. E., Reid, C. P. P. and Cline, G. R. 1981. Production of hydroxamate siderophore iron chelators by ectomycorrhizal fungi. Mycologia. 73: 1158–1174.

    Article  CAS  Google Scholar 

  172. Tarafdar, J. C. and Marschner, H. 1994. Efficiency of VAM hyphae in utilisation of organic phosphorus by wheat plants. Soil Sci. Plant Nutr. 40: 593–600.

    Article  CAS  Google Scholar 

  173. Tarafdar, J. C. and Marschner, H. 1994. Phosphatase activity in the rhizosphere and hyphosphere of VA mycorrhizal wheat supplied with inorganic and organic phosphorus. Soil Biol. Biochem. 26: 387–395.

    Article  CAS  Google Scholar 

  174. Tarkalson, D. D., Jolley, V. D., Robbins, C. W. and Terry, R. E. 1998. Mycorrhizal colonization and nutrition of wheat and sweet corn grown in manure-treated and untreated topsoil and subsoil. J. Plant Nutr. 21: 1985–1999.

    Article  CAS  Google Scholar 

  175. Tawaraya, K., Sasai, K. and Wagatsuma, T. 1994. Effect of phosphorus application on the contents of amino acids and reducing sugars in the rhizosphere and VA mycorrhizal infection of white clover. Soil Sci. Plant Nutr. 40: 539–543.

    Article  CAS  Google Scholar 

  176. Tawaraya, K., Imai, T. and Wagatsuma, T. 1999. Importance of root length in mycorrhizal colonization of Welsh onion. J. Plant Nutr. 22: 589–596.

    Article  CAS  Google Scholar 

  177. Taylor, T. N., Remy, W., Hass, H. and Kerp, H. 1995. Fossil arbuscular mycorrhizae from the early Devonian Mycologia. 87: 560–573.

    Google Scholar 

  178. Tester, M., Smith, F. A. and Smith, S. E. 1992. The role of ion channels in controlling solute exchange in mycorrhizal associations. In: Mycorrhizas in Ecosystems, D. J. Read, D. H. Lewis, A. H. Fitter and I. J. Alexander, eds. Wallingford, UK: CAB International. pp. 348–351

    Google Scholar 

  179. Tinker, P. B. and Gildon, A. 1983. Mycorrhizal fungi and ion uptake. In: Metals and Micronutrients: Uptake and Utilization by Plants, D. A. Robb and W. S. Pierpoint, eds. New York, New York: Academic Press. pp. 21–32

    Google Scholar 

  180. Tobar, R., Azcón, R. and Barea, J. M. 1994. Improved nitrogen uptake and transport from 15N-labelled nitrate by external hyphae of arbuscular mycorrhiza under water-stressed conditions. New Phytol. 126: 119–122.

    Article  Google Scholar 

  181. Toro, M., Azcón, R. and Barea, J. M. 1998. The use of isotopic dilution techniques to evaluate the interactive effects of Rhizobium genotype, mycorrhizal fungi, phosphate-solubilizing rhizobacteria and rock phosphate on nitrogen and phosphorus acquisition by Medicago sativa. New Phytol. 138: 265–273.

    Article  CAS  Google Scholar 

  182. Turner, S. D. and Friese, C. F. 1998. Plant-mycorrhizal community dynamics associated with a moisture gradient within a rehabilitated prairie fen. Restoration Ecol. 6: 44–51.

    Article  Google Scholar 

  183. van Tuinen, D., Jacquot, E., Zhao, B., Gollotte, A. and Gianinazzi-Pearson, V. 1998. Characterization of root colonization profiles by a microcosm community of arbuscular mycorrhizal fungi using 25S rDNA-targeted nested PCR. Molec. Ecol. 7: 879–887.

    Article  Google Scholar 

  184. von Wirén, N., Gazzarrini, S. and Frommer, W. B. 1997. Regulation of mineral nitrogen uptake in plants. Plant Soil. 196: 191–199.

    Article  Google Scholar 

  185. Wallenda, T., Stober, C., Högbom, L., Schinkel, H., George, E., Högberg, P. and Read, D. J. 2000. Nitrogen uptake processes in roots and mycorrhizas. In: Carbon and Nitrogen Physiology in Forest Ecosystems, E.-D. Schulze, ed. Berlin, Germany: Springer.

    Google Scholar 

  186. Weissenhorn, I., Glashoff, A., Leyval, C. and Berthelin, J. 1994. Differential tolerance to Cd and Zn of arbuscular mycorrhizal ( AM) fungal spores isolated from heavy metal-polluted and unpolluted soils. Plant Soil. 167: 189–196.

    Article  CAS  Google Scholar 

  187. Weissenhorn, I., Leyval, C., Belgy, G. and Berthelin, J. 1995. Arbuscular mycorrhizal contribution to heavy metal uptake by maize (Zea mays L.) in pot culture with contaminated soil. Mycorrhiza. 5: 245–251.

    CAS  Google Scholar 

  188. Wright, D. P., Read, D. J. and Scholes, J. D. 1998. Mycorrhizal sink strength influences whole plant carbon balance of Trifolium repens L. Plant Cell Environ. 21: 881–891.

    Article  Google Scholar 

  189. Wright, S. F. and Upadhyaya, A. 1998. A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant Soil. 198: 97–107.

    Article  CAS  Google Scholar 

  190. Xie, Z.-P., Staehelin, C., Vierheilig, H., Wiemken, A., Jabbouri, S., Broughton, W. J., Vögeli-Lange, R. and Boller, T. 1995. Rhizobial nodulation factors stimulate mycorrhizal colonization of nodulating and nonnodulating soybeans. Plant Physiol. 108: 1519–1525.

    PubMed  CAS  Google Scholar 

  191. Yang, W. Q., Goulart, B. L. and Demchak, K 1996. The effect of aluminium and media on the growth of mycorrhizal and nonmycorrhizal highbush blueberry plantlets. Plant Soil. 183: 301–308.

    Article  CAS  Google Scholar 

  192. Young, C. C., Juang, T. C. and Guo, H. Y. 1986. The effect of inoculation with vesicular-arbuscular mycorrhizal fungi on soybean yield and mineral phosphorus utilization in subtropical-tropical soils. Plant Soil. 95: 245–253.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

George, E. (2000). Nutrient uptake. In: Kapulnik, Y., Douds, D.D. (eds) Arbuscular Mycorrhizas: Physiology and Function. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0776-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0776-3_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5515-6

  • Online ISBN: 978-94-017-0776-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics