Skip to main content

In Vitro and in Situ Techniques to Examine the Role of Roots and Root Exudates During AM Fungus-Host Interactions

Signaling processes between AM fungi and host roots

  • Chapter
Arbuscular Mycorrhizas: Physiology and Function

Abstract

Although it is believed that root exudates play a major role in the infection and colonization of hosts by arbuscular mycorrhizal (AM) fungi, the actual role or mode of action of exudates has been elucidated only recently. New developments in in vitro culture techniques and in situ compartmental analyses have allowed the role of host roots and exudates during AM fungus colonization to become clear. These recent developments also have provided a way to study the colonization of host roots in the presence of nonhost root systems and have provided a more precise way to study nonhost exudates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Avio, L., Sbrana, C., and Giovannetti, M. 1990. The response of different species of Lupinus to VAM endophytes. Symbiosis. 9: 321–323.

    Google Scholar 

  2. Azcon, R. and Ocampo, J.A. 1984. Effect of root exudation on VA mycorrhizal infection at early stages of plant growth. Plant Soil. 82: 133–138.

    Article  Google Scholar 

  3. Bago, B., Azcon-Aguilar, C., and Piche, Y. 1998. Architecture and developmental dynamics of the external mycelium of the arbuscular mycorrhizal fungus Glomus intraradices grown in monoxenic conditions. Mycologia. 90: 52–62.

    Article  Google Scholar 

  4. Bécard, G. and Fortin, J.A. 1988. Early events of vesicular-arbuscular mycorrhiza formation on Ri T-DNA transformed roots. New Phytol. 108: 211–218.

    Article  Google Scholar 

  5. Bécard, G. and Piché, Y. 1989. New aspects on the acquisition of biotrophic status by a vesicular-arbuscular mycorrhizal fungus, Gigaspora margarita. New Phytol. 112: 77–83.

    Article  Google Scholar 

  6. Bécard, G. and Piché, Y. 1989 Fungal growth stimulation by CO2 and root exudates in vesicular-arbuscular mycorrhizal symbiosis. Applied Environ. Microbiol. 55: 2320–2325.

    Google Scholar 

  7. Bonfante, P. 1994. Ultrastructural analysis reveals the complex interactions between root cells and arbuscular mycorrhizal fungi, In: Impact of Arbuscular Mycorrhizas on Sustainable Agriculture and Natural Ecosystems, S. Gianinazzi and H. Schuepp, eds., Birkhauser Verlag, Basel, Switzerland, pp. 73–87.

    Chapter  Google Scholar 

  8. Bonfante, P. and Bianciotto, V. 1995. Presymbiotic versus symbiotic phase in arbuscular endomycorrhizal fungi: morphology and cytology. In: Mycorrhiza, A. Varma and B. Hock, eds., Springer-Verlag, Berlin, Heidelberg, pp. 229–247.

    Google Scholar 

  9. Brundrett, M.C., Piché, Y. and Peterson, R.L. 1985. A developmental study of the early stages in vesicular-arbuscular mycorrhiza formation. Can. J. Bot. 63: 184–194.

    Article  Google Scholar 

  10. Carr, G.R., Hinkley, M.A., LeTacon, F., Hepper, C.M., Jones, M.G., and Thomas, E. 1985. Improved hyphal growth of two species of vesicular-arbuscular mycorrhizal fungi in the presence of suspension-cultured plant cells. New Phytol. 101: 417–426.

    Article  Google Scholar 

  11. Codignola, A., Verotta, L., Spanu, P., Maffei, M., Scannerini, S., and Bonfante-Fasolo, P. 1989. Cell wall bound-phenols in roots of vesicular-arbuscular mycorrhizal plants. New Phytol. 112: 221–228.

    Article  CAS  Google Scholar 

  12. Curl, E.A. and Truelove, B. 1986. The Rhizosphere, Springer-Verlag, New York, Heidelberg, Berlin, Tokyo, pp 52–92.

    Google Scholar 

  13. Dickinson, S. 1949. Studies in the physiology of obligate parasitism. II: The behavior of the germ-tubes of certain rusts in contact with various membranes. Ann. Bot. N. S. 13: 219–236.

    Google Scholar 

  14. Douds, Jr., D.D. and Schenck, N.C. 1991. Germination and hyphal growth of VAM fungi during and after storage in soil at five matric potentials. Soil Biol. Biochem. 23: 177–183.

    Article  Google Scholar 

  15. Douds Jr., D.D., Nagahashi, G., and Abney, G. 1996. The differential effects of cell wall-associated phenolics, cell walls, and cytosolic phenolics of host and nonhost roots on the growth of two species on AM fungi. New Phytol. 133: 289–294.

    Article  CAS  Google Scholar 

  16. Friese, C.F. and Allen, M.F. 1991. The spread of VA mycorrhizal hyphae in the soil: Inoculum types and external hyphal architecture. Mycologia. 83: 409–418.

    Article  Google Scholar 

  17. Garriock, M.L., Peterson, R.L., and Ackerley, C.A. 1989. Early stages in colonization of Allium porrum (leek) roots by the vesicular-arbuscular mycorrhizal fungus, Glomus versiforme. New Phytol. 112: 85–92.

    Article  Google Scholar 

  18. Giovannetti, M. 1997. Host signals dictating growth direction, morphogenesis and differentiation in arbuscular mycorrhizal symbionts. In: Eukaryotism and Symbiosis, H.E.A. Schenk, R.G. Herrmann, K.W. Jeon, N.E. Muller, W. Schwemmler, eds., Springer, Berlin, Heidelberg, New York, pp. 405–411.

    Chapter  Google Scholar 

  19. Giovannetti, M., Avio, L., Sbrana, C., and Citernesi, A.S. 1993. Factors affecting appressorium development in the vesicular-arbuscular mycorrhizal fungus Glomus mosseae (Nicol. & Gerd.) Gerd. & Trappe. New Phytol. 123: 114–122.

    Google Scholar 

  20. Giovannetti, M. and Citernesi, A.S. 1993. Time course of appressorium formation on host plants by mycorrhizal fungi. Mycol. Res. 97: 1140–1142.

    Article  Google Scholar 

  21. Giovannetti, M., Sbrana, C., Avio, L., Citernesi, A.S., and Logi, C. 1993. Differential hyphal morphogenesis in arbuscular mycorrhizal fungi during pre-infection stages. New Phytol. 125: 587–594.

    Article  Google Scholar 

  22. Giovannetti, M., Sbrana, C., Citernesi, A.S., Avio, L., Gollote, A., Gianinazzi-Pearson, V., and Gianinazzi, S. 1994. Recognition and infection process, basis for host specificity of arbuscular mycorrhizal fungi. In: Impact of Arbuscular Mycorrhizas on Sustainable Agriculture and Natural Ecosystems S. Gianinazzi and H. Schuepp, eds. Birkhauser Verlag, Basel, Switzerland, pp 61–72.

    Chapter  Google Scholar 

  23. Giovannetti, M., Sbrana, C., Citernesi, A.S., and Avio, L. 1996. Analysis of factors involved in fungal recognition responses to host-derived signals by arbuscular mycorrhizal fungi New Phytol. 133: 65–71.

    Google Scholar 

  24. Giovanetti, M. and Sbrana, C. 1998. Meeting a non-host: the behavior of AM fungi. Mycorrhiza. 8: 123–130.

    Article  Google Scholar 

  25. Glenn, M.G., Chew, F.S., and Williams, P.H. 1985. Hyphal penetration of Brassica (Cruciferae) roots by a vesicular-arbuscular mycorrhizal fungus. New Phytol. 99: 463–472.

    Article  Google Scholar 

  26. Graham, J.H. 1982. Effect of citrus exudates on germination of chlamydospores of the vesicular-arbuscular mycorrhizal fungus, Glomus epigaeum. Mycologia. 68: 831–835.

    Article  Google Scholar 

  27. Graham, J A, Leonard, R.T., and Menge, J.A. 1981. Membrane-mediated decrease in root exudation responsible for phosphorus inhibition of vesicular-arbuscular mycorrhiza formation. Plant Physiol. 68: 548–552.

    Article  PubMed  CAS  Google Scholar 

  28. Hawes, M.C., Brigham, L.A., Wen, F., Woo, H.H., and Zhu, Y. 1998. Function of root border cells in plant health: pioneers in the rhizosphere. Ann. Rev. Phytopathol. 36: 311–327.

    Article  CAS  Google Scholar 

  29. Hirrel, M.C., Mehravaran, H., and Gerdemann, J.W. 1978. Vesicular-arbuscular mycorrhizae in the Chenopodeaceae and Cruciferae: do they occur? Can. J. Bot. 56: 2813–2817.

    Article  Google Scholar 

  30. Hoch, H.C., Staples, R.C., Whitebread, B., Comeau, J., and Wolf, E.D. 1987. Signaling for growth orientation and cell differentiation by surface topography in Uromyces. Science. 235: 1659–1662.

    Article  PubMed  CAS  Google Scholar 

  31. Holliday, P. 1989. A dictionary of plant pathology. Cambridge University Press. Cambridge, Melbourne, New York, Port Chester, Sydney, 369 p.

    Google Scholar 

  32. Koide, R.T. and Schreiner, R.P. 1992. Regulation of the vesicular-arbuscular mycorrhizal symbiosis. Ann. Rev. Plant Physiol. Plant Mol. Biol. 43: 557–581.

    Article  CAS  Google Scholar 

  33. Koske, R.E. 1982. Evidence for a volatile attractant from plant roots affecting germ tubes of a VA mycorrhizal fungus. Trans. Brit Mycol. Soc. 79: 305–310.

    Article  Google Scholar 

  34. Lackie, S.M., Garriock, M.L., Peterson, R.L., and Bowley, S.R. 1987. Influence of host plant on the morphology of the vesicular-arbuscular mycorrhizal fungus, Glomus versiforme (Daniels and Trappe) Berch. Symbiosis 3: 147–158.

    Google Scholar 

  35. Logi, C., Sbrana, C., and Giovannetti, M. 1998. Cellular events involved in survival of individual arbuscular mycorrhizal symbionts growing in the absence of the host. Appl. Environ. Microbiol. 64: 3473–3479.

    PubMed  CAS  Google Scholar 

  36. Manocha, M.S. and Chen, Y. 1990. Specificity of attachment of fungal parasites to their hosts. Can. J. Bot 36: 69–76.

    CAS  Google Scholar 

  37. Manorik, V. and Belima, N.I. 1969. Method of studying root exudates and of calculating their amounts. Fiziol Rast. 2: 358–364.

    Google Scholar 

  38. Mosse, B. 1959. The regular germination of resting spores and some observations on the growth requirements of an Endogone sp. causing vesicular-arbuscular mycorrhiza. Trans. Br. Mycol. Soc. 42: 273–286.

    Article  Google Scholar 

  39. Mosse, B. 1962. The establishment of vesicular-arbuscular mycorrhiza under aseptic conditions. J. Gen. Microbiol. 27: 509–520.

    PubMed  CAS  Google Scholar 

  40. Mosse, B. 1988. Some studies relating to “independent” growth of vesicular-arbuscular endophytes. Can. J. Bot 66: 2533–2540.

    Article  Google Scholar 

  41. Mosse, B. and Hepper, C. 1975. Vesicular-arbuscular mycorrhizal infections in root organ cultures. Physiol. Plant Pathol. 5: 215–223.

    Article  Google Scholar 

  42. Mugnier, J. and Mosse, B. 1987. Vesicular-arbuscular mycorrhizal infection in transformed root-inducing T- DNA roots grown axenically. Phytopathol. 77: 1045–1050.

    Article  Google Scholar 

  43. Nagahashi, G., Seibles, T.S., Jones, S.B., and Rao, J. 1985. Purification of cell wall fragments by sucrose gradient centrifugation. Protoplasma 129: 36–43.

    Article  CAS  Google Scholar 

  44. Nagahashi, G. and Seibles, T.S. 1986. Purification of plant cell walls: isoelectric focusing of CaCl2 extracted enzymes. Protoplasma 134: 102–110.

    Article  CAS  Google Scholar 

  45. Nagahashi, G., Abney, G.D. and Uknalis, J. 1994. Separation of vascular cell walls from cortical cell walls of plant roots. Protoplasma 134: 102–110.

    Article  Google Scholar 

  46. Nagahashi, G. and Douds Jr., D.D. 1996. A rapid micro-injection technique allows for the sensitive detection of root exudate signals which stimulate the branching and growth of germinated VAM fungus spores. In: First International Conference on Mycorrhizae, Berkeley, CA, Aug 4–9, 1996. T.M. Szaro and T.D. Bruns, eds. p 91.

    Google Scholar 

  47. Nagahashi, G. and Douds, Jr., D.D. 1997. Appressorium formation by AM fungi on isolated cell walls of canot roots. New Phytol. 136: 299–304.

    Article  Google Scholar 

  48. Nagahashi, G. and Douds Jr., D.D. 1999. Recognition and communication events between arbuscular mycorrhizal fungi and host roots, in: Current Topics in Plant Biology, Research Trends, India. (In press).

    Google Scholar 

  49. Niemira, B.A., Safir, G.R., and Hawes, M.C. 1996. Arbuscular mycorrhizal colonization and border cell production: a possible correlation. Phytopathol. 86: 563–565.

    Google Scholar 

  50. Ocampo, J.A., Martin, J., and Hayman, D S 1980. Influence of plant interactions on vesicular-arbuscular mycorrhizal infections. I. Host and non-host plants grown together. New Phytol. 84: 27–35.

    Google Scholar 

  51. Schreiner, R.P. and Koide, R.T. 1993. Stimulation of vesicular-arbuscular mycorrhizal fungi by mycotrophic and nonmycotrophic plant root systems. Appl. Environ. Microbial. 59: 2750–2752.

    CAS  Google Scholar 

  52. Schreiner, R.P. and Koide, R.T. 1993. Mustards, mustard oils and mycorrhizas. New Phytol. 123: 107–113.

    Article  CAS  Google Scholar 

  53. Schreiner, R.P. and Koide, R.T. 1993. Antifungal compounds from the roots of mycotrphic and non-mycotrophic plant species. New Phytol. 123: 99–105.

    Article  CAS  Google Scholar 

  54. Schwab, S.M., Leonard, R.T., and Menge, J.A. 1984. Quantitative and qualitative comparison of root exudates of mycorrhizal and nonmycorrhizal plant species. Can. J. Bot. 62: 1227–1231.

    Article  Google Scholar 

  55. Smith, S.E., Dickson, S., and Walker, N.A. 1992. Distribution of VA mycorrhizal entry points near the root apex: Is there an uninfectible zone at the root tip of leek or clover? New Phytol. 122: 469–477.

    Article  Google Scholar 

  56. Staples, R.C. and Macko, V. 1980. Formation of infection structures as a recognition response in fungi. Exp. Mycol. 4: 2–16.

    Article  Google Scholar 

  57. St.-Arnaud, M., Hamel, C., Vimard, B., Caron, M., and Fortin, J.A. 1996 Enhanced hyphal growth and spore production of the arbuscular mycorrhizal fungus Glomus intraradices in an in vitro system in the absence of host roots. Mycol. Res. 100: 328–332.

    Article  Google Scholar 

  58. Tommerup, I.C. 1984. Development of infection by a vesicular-arbuscular mycorrhizal fungus in Brassica napus L. and Trifolium subterraneum L. New Phytol. 98: 487–495.

    Article  Google Scholar 

  59. van Nuffelen, M., and Schenck, N.C. 1984. Spore germination, penetration and root colonization of six species of vesicular-arbuscular mycorrhizal fungi on soybean. Can. J. Bot. 62: 624–628.

    Article  Google Scholar 

  60. Vierheilig, H., Alt, M., Mader, P., Boller, T., and Wiemken, A. 1995. Spreading of Glomus mosseae, a vesicular-arbuscular mycorrhizal fungus, across the rhizosphere of host and non-host plants. Soil Biol. Biochem. 27: 1113–1115.

    Article  CAS  Google Scholar 

  61. Vierheilig, H. and Ocampo, J.A. 1990. Role of root extract and volatile substances of non-host plants on vesicular-arbuscular mycorrhizal spore germination. Symbiosis. 9: 199–202.

    Google Scholar 

  62. Vierheilig, H. and Ocampo, J.A. 1990. Effect of isothiocyanates on germination of spores of G. mosseae. Soil Biol. Biochem. 22: 1161–1162.

    Article  CAS  Google Scholar 

  63. Vierheilig, H., Alt-Hug, M., Engel-Streitwolf, R., Mader, P., and Wiemken, A. 1998. Studies on the attractional effect of root exudates on hyphal growth of an arbuscular mycorrhizal fungus in a soil compartment-membrane system. Plant Soil. 203: 137–144.

    Article  CAS  Google Scholar 

  64. Williams, P G 1971. A new perspective of the axenic culture of Puccinia graminis f sp. tritici from uredospores. Phytopathol. 61: 994–1002.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Nagahashi, G. (2000). In Vitro and in Situ Techniques to Examine the Role of Roots and Root Exudates During AM Fungus-Host Interactions. In: Kapulnik, Y., Douds, D.D. (eds) Arbuscular Mycorrhizas: Physiology and Function. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0776-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0776-3_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5515-6

  • Online ISBN: 978-94-017-0776-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics