Skip to main content

The extraretinal photoreceptors of non-mammalian vertebrates

  • Chapter
Adaptive Mechanisms in the Ecology of Vision

Abstract

When John Lythgoe published The Ecology of Vision in 1979 he did not include any discussion of extraretinal or extraocular photopigments. However, during the 1980’s information about these photopigments emerged, and John’s research interests also began to encompass this field. In 1984 John considered the adaptive aspects of extraretinal photoreceptors and noted that ‘As yet there does not seem to be any reason to think that the spectral absorbance of extraretinal photo-pigments are located in the spectrum to maximise the capture of photons...’ (Lythgoe 1984). In this chapter we will review this statement, in the light of recent findings, and discuss the sensory ecology of these remarkable photoreceptor systems. Our discussion of extraretinal photoreceptors has been divided between two chapters, this and the one following. The first part of this chapter will consider the diversity and role of the extraretinal photoreceptors in the non-mammalian vertebrates, and the second part of the chapter will consider the sensory tasks of extraretinal photoreceptors and the extent to which the photo-pigments of these systems are ‘fine-tuned’ to their sensory role. In Chapter 7 we concentrate on the role of extraretinal and retinal photoreceptors in the regulation of biological clocks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Appleby, S. J. and Muntz, W. R. A. (1979) Occlusable yellow comeas in Tetraodontidae. Journal of Experimental Biology, 83, 249–259.

    Google Scholar 

  • Bagnara, J. T. and Hadley, M. E. (1970) Endocrinology of the amphibian pineal. American Zoologist, 10, 201–216.

    Google Scholar 

  • Barr, L. (1989) Photomechanical coupling in the vertebrate sphincter pupillae. CRC Critical Review of Neurobiology, 4, 325–366.

    CAS  Google Scholar 

  • Ban, L. and Alpem, M. (1963) Photosensitivity of the frog iris. Journal of General Physiology, 46, 1249–1265.

    Google Scholar 

  • Barr, L. and Gu, F. (1987) A quantitative model of myosin phosphorylation and the photomechanical response of the isolated sphincter pupillae of the frog iris. Biophysics Journal, 51, 895–904.

    Article  CAS  Google Scholar 

  • Bell, A. L. (1967) Morphological and physiological investigations of the photosensitive iris of the American eel (Anguilla rostrata). State University of New York.

    Google Scholar 

  • Benoit, J. (1935a) Le role des yeux dans l’action stimulante de la lumiere sur le developpement testiculaire chez le candard. Comptes Rendus des Séances de la Société de Physique et de ses Filiales, 118, 669–671.

    Google Scholar 

  • Benoit, J. (1935b) Stimulation par la lumiere artificielle du developpement testiculaire chez des canards aveugles par section du nerf optique. Comptes Rendus des Séances de la Société de Physique et de ses Filiales, 120, 133–136.

    Google Scholar 

  • Blackshaw, S. and Snyder, S. (1997) Parapineal opsin, a novel catfish opsin localized to the parapineal organ, defines a new gene family. The Journal of Neuroscience, 17 (21), 8083–8092.

    PubMed  CAS  Google Scholar 

  • Clothier, J. and Lythgoe, J. N. (1987) Light-induced colour changes by the iridophores of the neon tetra, Paracheirodon innesi. Journal of Cell Science, 88, 663–668.

    Google Scholar 

  • Cooper, H. M., Tessonneaud, A., Caldani, A., Locatelli, A., Richard, S. and Viguier-Martinez, M. C. (1993) Morphology and distribution of retinal ganglion cells (RGC) projecting to the suprachiasmatic nucleus in the sheep. Society for Neuroscience Abstracts, 19, Abstract 701. 11.

    Google Scholar 

  • Deguchi, T. (1981) Rhodopsin-like photosensitivity of isolated chicken pineal gland. Nature, 290, 702–704. Dodt, E. and Heerd, F. (1962) Mode of action of pineal nerve fibers in frogs. Journal of neurophysiology, 25, 405–429.

    Google Scholar 

  • Dodt, E. and Meissl, H. (1982) The pineal and parietal organs of lower vertebrates. Experientia, 38, 996–1000.

    Google Scholar 

  • Dodt, E. and Morita, Y. (1964) Purkinje-verschiebung, absolute schwelle and adaptives verhalten einzelner elemente der intrakranialen anuren-epiphyse. Vision Research, 4, 413–421.

    Article  PubMed  CAS  Google Scholar 

  • Dodt, E. and Scharrer, E. (1968) Photic responses from the parietal eye of the lizard Lacerta sicula campestris (De Betta). Vision Research, 8, 61–72.

    Article  Google Scholar 

  • Dryer, S. E. and Henderson, D. (1991) A cyclic GMP-activated channel in dissociated cells of the chick pineal. Nature, 353, 756–758.

    Google Scholar 

  • Ebisawa, T., Karne, S., Lerner, M. R and Reppert, S. M. (1994) Expression cloning of a high-affinity melatonin receptor from Xenopus dermal melanophores. Proceedings of the National Academy of Sciences USA, 91 (13), 6133–6137.

    Article  CAS  Google Scholar 

  • Ekstrom, P., Borg, B. and van Veen, T.-H. (1983) Ontogenetic development of the pineal organ, parapieal organ, and retina of the three-spined stickleback, Gasterosteus aculeatus L. (Teleostei). Cell & Tissue Research, 233, 593–609.

    CAS  Google Scholar 

  • Engbretson, A. (1992) Neurobiology of the lacertilian parietal eye system. Ethology, Ecology and Evolution, 4, 89–107.

    Google Scholar 

  • Falcon, J. and Meissl, H. (1981) The photosensory function of the pineal organ of the pike (Esox Lucius L.). Correlation between structure and function. Journal of Comparative Physiology A, 144, 127–137.

    Google Scholar 

  • Fenwick, J. C. (1970) Effects of pinealectomy and bilateral enucleation on the phototactic response and on the conditioned response to light of the goldfish Carassius auratus L. Canadian Journal of Zoology, 48, 175–182.

    Google Scholar 

  • Fernandez-de-Miguel, F. and Arechiga, H. (1992) Sensory inputs mediating two opposite behavioural responses to light in the crayfish Procambarus clarkii. Journal of Experimental Biology, 164, 153–169.

    Google Scholar 

  • Foster, R. G. and Follett, B. K. (1985) The involvement of a rhodopsin-like photopigment in the photoperiodic response of the Japanese quail. Journal of Comparative Physiology A, 157, 519–528.

    Article  CAS  Google Scholar 

  • Foster, R. G., Follett, B. K. and Lythgoe, J. N. (1985) Rhodopsin-like sensitivity of extra-retinal photoreceptors mediating the photoperiodic response in quail. Nature, 313 (5997), 50–52.

    Article  PubMed  CAS  Google Scholar 

  • Foster, R. G., Garcia-Fernandez, J. M., Provencio, I. and DeGrip, W. J. (1993) Opsin localization and chromophore retinoids identified within the basal brain of the lizard Anolis carolinensis. Journal of Comparative Physiology A, 172, 33–45.

    Google Scholar 

  • Foster, R. G., Grace, M. S., Provencio, I., DeGrip, W. J. and Garcia-Fernandez, J. M. (1994) Identification of vertebrate deep brain photoreceptors. Neuroscience and Biobehavioral Reviews,18(4), 541–546.

    Google Scholar 

  • Foster, R. G., Korf, H. G. and Schalken, J. J. (1987) Immunocytochemical markers revealing retinal and pineal but not hypothalamic photoreceptor systems in the Japanese quail. Cell and Tissue Research, 248, 161–167.

    Article  PubMed  CAS  Google Scholar 

  • Foster, R. G. and Menaker, M. (1993) Circadian photoreception in mammals and other vertebrates. Light and biological rhythms in man. L. Wetterberg, Pergamon: pp. 73–91.

    Google Scholar 

  • Foster, R. G. and Roberts, A. (1982) The pineal eye in Xenopus laevis embryos and larvae: A photoreceptor with a direct excitatory effect on behavior. Journal of Comparative Physiology A, 145, 413–419.

    Google Scholar 

  • Foster, R. G., Schalken, J. J., Timmers, A. M. and De Grip, W. J. (1989) A comparison of some photoreceptor characteristics in the pineal and retina: I. The Japanese quail (Coturniz cotunrix). Journal of Comparative Physiology A, 165, 553–563.

    Google Scholar 

  • Frisch, K. v. (1911) Beitrage zur Physiologie der Pigmentzellen in der Fischaut. Pflügers Archiv für die gesamte Physiologie des Menschen and der Tiere, 138, 319–387.

    Article  Google Scholar 

  • Garcia-Fernandez, J. M. and Foster, R. G. (1994) Immunocytochemical identification of photoreceptor proteins in hypothalamic cerebrospinal fluid-contacting neurons of the larval lamprey (Petromyzon marinus). Cell and Tissue Research, 275, 319–326.

    Article  CAS  Google Scholar 

  • Garcia-Fernandez, J. M., Jimenez, A. J., Gonzalez, B., Pombal, M. A. and Foster, R. G. (1997) An immunocytochemical study of encephalic photoreceptors in three species of lamprey. Cell and Tissue Research: 288, 267–278.

    Google Scholar 

  • Groos, G. (1982) The comparative physiology of extraocular photoreception. Experientia, 38, 989–1128. Harth, M. S. and Heaton, M. B. (1973) Non-visual responsiveness in newly hatched pigeons. Science, 180, 753–755.

    Google Scholar 

  • Hartwig, H.-G. and Baumann, C. H. (1974) Evidence for the photosensitive pigments in the pineal complex of the frog. Vision Research, 14, 597–598.

    Google Scholar 

  • Hartwig, H.-G. and van Veen, T. (1979) Spectral characteristics of visible radiations penetrating into the brain and stimulating extra-retinal photoreceptors. Journal of Comparative Physiology A,120, 277–282.

    Google Scholar 

  • Helfrich, C. (1986) Role of the optic lobes in the regulation of the locomotor activity rhythm of Drosophil melanogaster: Behavioural analysis of visual mutants. Journal of Neurogenetics, 3, 321–343.

    Google Scholar 

  • Iga, T. and Takabatake, I. (1986) Local light stimulation of melanophores of a teleost, Zaco temmincki.Journal of Experimental Biology, 238, 385–391.

    CAS  Google Scholar 

  • Kawamura, S. and Yokoyama, S. (1996) Molecular characterization of the pigeon P-opsin gene. Gene, 182, 213–214.

    Article  PubMed  CAS  Google Scholar 

  • Kawamura, S. and Yokoyama, S. (1997) Expression of visual and nonvisual opsins in American chameleon. Vision Research, 37, 1867–1871.

    Article  PubMed  CAS  Google Scholar 

  • Kondrashev, S. L., Gamburtzeva, A. G., Gnjubkina, V. P., Orlov, O. J. and My, P. T. (1986) Colouration of corneas in fish. A list of species. Vision Research, 26, 287–290.

    Google Scholar 

  • Kondrashev, S. L. and Khodtsev, A. S. (1984) Light-dependent and humoral control of pigment transport in corneal chromatophores in marine fishes. Zoological Journal of Physiology, 88, 317–325.

    Google Scholar 

  • Kusmic, C., Barsanti, L., Passarelli, V. and Gualtieri, P. (1993) Photoreceptor morphology and visual pigment content in the pineal organ and in the retina of juvenile and adult trout, Salmo irideus. Micron, 24, 279–286.

    Article  Google Scholar 

  • Land, M. F. (1987) Screening pigment migration in a sphingid moth is triggered by light near the cornea. Journal of Comparative Physiology A, 160, 355–357.

    Google Scholar 

  • Land, M. E (1991) Optics of the eyes of the animal kingdom. Vision and Visual Dysfunction. J. R. CronlyDillon and R. L. Gregory, CRC Press. 2, 118–135.

    Google Scholar 

  • Lythgoe, J. N. (1979) The Ecology of Vision. Oxford: Clarendon Press.

    Google Scholar 

  • Lythgoe, J N. (1984) Visual pigments and environmental light. Vision Research,24, 1539–1550. Lythgoe, J. N. and Shand, J. (1982) Changes in spectral reflexions from the iridophores of the neon tetra. Journal of Physiology,325, 23–34.

    Google Scholar 

  • Lythgoe, J. N. and Shand, J. (1983) Diel colour changes in the neon tetra Paracheirodon innesi. Environmental Biology of Fish, 8, 249–254.

    Article  Google Scholar 

  • Lythgoe, J. N. and Shand, J. (1984) Action spectra for the iridophore light response in the neon tetra. Photochemistry & Photobiology, 40, 551–553.

    Google Scholar 

  • Lythgoe, J. N. and Shand, J. (1989) The structural basis for iridescent colour changes in dermal and corneal iridophores in fish. Journal of Experimental Biology, 141, 313–325.

    Google Scholar 

  • Lythgoe, J. N., Shand, J. and Foster, R. G. (1984) Visual pigment in fish iridocytes. Nature, 308 (5954), 83–84.

    Article  CAS  Google Scholar 

  • Lythgoe, J. N. and Thompson, M. (1984) A porphyropsin-like action spectrum from Xenopus melanophores. Photochemistry & Photobiology, 40, 411–412.

    Article  CAS  Google Scholar 

  • Marchiafava, P. L. and Kusmic, C. (1993) The electrical responses of the trout pineal photoreceptors to brief and prolonged illumination. Progress in Brain Research, 95, 3–13.

    Google Scholar 

  • Max, M. and Menaker, M. (1992) Regulation of melatonin production by light, darkness, and temperature in the trout pineal. Journal of Comparative Physiology A, 170 (4), 479–489.

    CAS  Google Scholar 

  • Meissl, H. and Brandstatter, R. (1992) Photoreceptive function of the teleost pineal organ and their implications in biological rhythms. Rhythms in fishes. M. A. Ali. New York, Plenum, 235–254.

    Google Scholar 

  • Meissl, H. and Ekstrom, P. (1988) Photoreceptor responses to light in the isolated pineal organ of the trout, Salmo gairdneri. Neuroscience, 24, 1071–1076.

    Article  Google Scholar 

  • Meissl, H. and Ueck, M. (1980) Extraocular photoreception of the pineal gland of the aquatic turtle Pseudomys scripta elegans. Journal of Comparative Physiology A, 140, 173–179.

    Google Scholar 

  • Meissl, H. and Yanez, J. (1994) Pineal photosensitivity. A comparison with retinal photoreception. Acta Neurobiologiae Experimentalis, 54 (suppl.), 19–29.

    PubMed  Google Scholar 

  • Menaker, M. and Underwood, H. (1976) Extraretinal photoreception in birds. Photochemistry and Photo-biology, 23, 299–306.

    Article  CAS  Google Scholar 

  • Millot, N. (1968) The dermal light sense, Invertebrate receptors. J. D. Carthy and G. E. Newells. New York, Academic Press, 1–36.

    Google Scholar 

  • Morita, Y. (1966) Entladungsmuster pinealer neurone der regenbogenforelle (Salmo irideus) bei belichtung des zwischenhims. Pflügers Archiv für die gesamte physiologies des Menschen und der 77ere, 289, 155–167.

    Google Scholar 

  • Morita, Y., Tabata, M. and Tamotsu, S. (1985) Intracellular response and input resistance change of pineal photoreceptors and ganglion cells. Neuroscience Research, 2, 79–88.

    Google Scholar 

  • Muntz, W. R. A. (1976) The visual consequences of yellow filtering pigments in the eyes of fishes occupying different habitats. Light as an Ecological Factor H. G. C. Evans, R. Bainbridges and O. Rackham. Oxford, Blackwell Scientific, 271–287.

    Google Scholar 

  • Munz, F. W. and McFarland, W. N. (1977) Evolutionary adaptations of fishes to the photic environment. Handbook of Sensory Physiology. F. Crescitelli. Berlin: Springer-Verlag. VII /5, 193–274.

    Google Scholar 

  • Nagaishi, H., Oshima, N. and Fujii, R. (1990) Light-reflecting properties of the iridophores of the neon tetra, Parachierodon innesi. Comparative Biochemistry and Physiology A, 35, 337–342.

    Google Scholar 

  • Nishi, T. and Gotow, T. (1992) A neural mechanism for processing colour information in molluscan extraocular photoreceptors. Journal of Experimental Biology, 168, 77–91.

    Google Scholar 

  • Nordtug, T., Berg, O. L. and Melo, T. B. (1994) Directional light transmission in the pineal window of atlantic salmon (Salmo salar L.) may be used for solar orientation. The Journal of Experimental Zoology, 269, 403–412.

    Article  Google Scholar 

  • Okana, T. and Fukada, Y. (1997) Phototransduction cascade and circadian oscillator in chicken pineal gland. Journal of Pineal Research, 22, 145–151.

    Google Scholar 

  • Okano, T., Yamazaki K., Kasahara, T. and Fukada, Y. (1997) Molecular cloning of heterotrimeric G-

    Google Scholar 

  • protein a-subunits in chicken pineal gland. Journal of Molecular Evolution, 44(Suppl 1), S91- S97. Okano, T., Yoshizawa, T. and Fukada, Y. (1994) Pinopsin is a chicken pineal photoreceptive molecule.

    Google Scholar 

  • Nature,372(6501), 94–97.

    Google Scholar 

  • Orlov, O. Y. and Gamburtzeva, A. G. (1976) Changeable coloration of cornea in the fish Hexagrammos octogrammus. Nature, 263, 405–407.

    Article  CAS  Google Scholar 

  • Page, T. L. (1982) Extraretinal photoreceptors in entrainment and photoperiodism in invertebrates. Experientia, 38, 1007–1013.

    Article  Google Scholar 

  • Pang, P. K. T. (1965) Light sensitivity of the pineal gland in blinded Fundulus heteroclitus. American Zoologist, 5, 682.

    Google Scholar 

  • Provencio, I. and Foster, R. G. (1993) Vitamin A2-based photopigments within the pineal gland of a fully terrestrial vertebrate. Neuroscience Letters, 155, 223–226.

    Article  PubMed  CAS  Google Scholar 

  • Provencio, I., Jiang, G., DeGrip, W. J., Hayes, W. P. and Rollag, M. D. (1998) Melanopsin: An opsin in melanophores, brain and eye. PNAS 95, 340–345.

    Google Scholar 

  • Quay, W. B. (1979) The parietal eye-pineal complex. Biology of the Reptilia. C. Glans, R. G. Northcutt and P. Ulinski, Academic Press 9.

    Google Scholar 

  • Rayport, S. and Wald, G. (1978) Frog skin photoreceptors. Pmgram of Abstracts of the 6th Annual Meeting of American Photobiology, 94–95.

    Google Scholar 

  • Rollag, M. D. (1993) Pertussis toxin sensitive photoaggregation of pigment in isolated Xenopus tail-fin melanophores. Photochemistry & Photobiology, 57, 862–866.

    Article  CAS  Google Scholar 

  • Romer, A. S. (1970) The Vertebrate Body. Philadelphia: W. B. Saunders..

    Google Scholar 

  • Ronan, M. and Bodznick, D. (1991) Behavioural and neurophysiological demonstration of a lateralis skin

    Google Scholar 

  • photosensitivity in larval sea lampreys. Journal of Experimental Biology,161, 97–117.

    Google Scholar 

  • Rubin, L. J. and Nolte J. F. (1986) Cyclic nucleotide levels of the photosensitive irises of Bufo Marinus

    Google Scholar 

  • and Lophius. Experimental Eye Research,43, 771–779.

    Google Scholar 

  • Rudeberg, C. (1969) Structure of the parapineal organ of the adult rainbow trout, Salmo gairdneri Richardson. Zeitschrift Zellforsch, 93, 282–304.

    Article  CAS  Google Scholar 

  • Scharrer, E. (1928) Die lichtempfindlichkeit blinder Elritzen I. Untersuchungen uber das Zwischenhirn der Fische. Zeitschrift Vergleichende Physiologie, 7, 1–38.

    Google Scholar 

  • Scharrer, E. (1964) Photoneuroendocrine systems: General concepts. Annals of the New York Academy of Science, 117, 13–22.

    Article  CAS  Google Scholar 

  • Seliger, H. H. (1963) Direct action of light on naturally pigmented muscle fibers, I. Action spectrum for eel iris sphincter. Journal of General Physiology, 46, 333–342.

    Article  Google Scholar 

  • Shand, J. (1988) Corneal iridescence in fishes: light-induced colour changes in relation to structure. Journal of Fish Biology, 32, 625–632.

    Article  Google Scholar 

  • Shand, J. and Lythgoe, J. N. (1987) Light-induced changes in corneal iridescence in fish. Vision Research, 27, 303–305.

    Article  PubMed  CAS  Google Scholar 

  • Shand, J. and Lythgoe, J. N. (1990) The isolated iridescent cornea of the sand goby is photoresponsive. Photochemistry and Photobiology, 51, 737–739.

    PubMed  CAS  Google Scholar 

  • Silver, R., Witkovsky, P., Horvath, P., Alones, V., Barnstable, C. J. and Lehman, M. N. (1988) Co-expression of opsin-and VIP-like-immunoreactivity in CSF-contacting neurons of the avian brain. Cell and Tissue Research, 253, 189–198.

    Google Scholar 

  • Solessio, E. and Engbretson, G. A. (1993) Antagonistic chromatic mechanisms in photoreceptors of the parietal eye of lizards. Nature, 364, 442–445.

    Article  PubMed  CAS  Google Scholar 

  • Soni, B. G. and Foster, R. G. (1997) A novel and ancient vertebrate opsin. FEBS Letters 406, 279–283.

    Article  PubMed  CAS  Google Scholar 

  • Soni, B. G., Philp, A., Knox, B. E. and Foster, R. G. (1998) Novel Retinal Photoreceptors. Nature, 394, 27–28.

    Google Scholar 

  • Steven, D. M. (1950) Some properties of the photoreceptors of the Brook lamphrey. Journal of Experimental Zoology, 27, 350–364.

    CAS  Google Scholar 

  • Steven, D. M. (1955) Experiments in the light sense of the hag fish, Myxine glutinosa. Journal of Experimental Biology.

    Google Scholar 

  • Steven, D. M. (1963) The dermal light sense. Biological Review, 38, 204–240.

    Article  CAS  Google Scholar 

  • Tabata, M., Suzuki, T. and Niwa, H (1985) Chromophores in the extraretinal photoreceptor (pineal organ) of teleosts. Brain Research,338, 173–176.

    Google Scholar 

  • Tamotsu, S. and Morita, Y. (1986) Photoreception in pineal organs of larval and adult lampreys, Lampetra japonica. Journal of Comparative Physiology A, 159, 1–5.

    Google Scholar 

  • Tosini, G. and Avery, R. (1996) Dermal receptors regulate basking behaviour in the lizard Podarcis muralis. Physiology and Behavior, 59, 195–198.

    Google Scholar 

  • Tosini, G. and Menaker, M. (1996) The pineal complex and melatonin affect the expression of the daily rhythm of behavioural thermoregulation in the green iguana. Journal of Comparative Physiology A, 179, 135–142.

    Google Scholar 

  • Uchida, K. and Morita, Y. (1990) Intracellular responses from UV-sensitive cells in the photosensory pineal organ. Brain Research, 534, 237–242.

    Google Scholar 

  • Ullen, F., Orlovsky, G. N., Delisgina, T. G. and Grillner, S. (1993) Role of dermal photoreceptors and lateral eyes initiation and orientation of locomotion in lamphrey. Behavioral Brain Research, 54, 107–110.

    Article  CAS  Google Scholar 

  • Underwood, H. (1992) Endogenous Rhythms. Biology of the reptilia Vol. 18: Hormones, Brain, and Behaviour. C. Gans and D. Crews. Chicago and London, The University of Chicago. Chapter 5, 229–297.

    Google Scholar 

  • Underwood, H. and Groos, G. (1982) Vertebrate circadian rhythms: Retinal and extraretinal photo-reception. Experientia, 38, 1013–1021.

    Google Scholar 

  • van Veen, T., Elofsson, R., Hartwig, H G., Gery, I., Mochizuki, M Cena, V. and Klein, D. C. (1986) Retinal S-antigen: immunocytochemical and immunochemical studies on distribution in animal photoreceptors and pineal organs. Experimental Biology,45(1), 15–25.

    Google Scholar 

  • Vigh, B. and Vigh-Teichmann, I. (1988) Comparative neurohistology and immunocytochemistry of the pineal complex with special reference to CSF-contacting neuronal structures. Pineal Research Review, 6, 1–65.

    Google Scholar 

  • Vollrath, L. (1981) The Pineal Organ. Berlin, Heidelberg, New York, Springer-Verlag.

    Google Scholar 

  • Wada, Y., Okano, T., Adachi, A., Ebihara, S. and Fukada, Y. (1998) Identification of rhodopsin in the pigeon deep brain. FEBS Letters, 424, 53–56.

    Article  PubMed  CAS  Google Scholar 

  • Wakamatsu, Y., Kawamuro, S. and Yoshizawa, T. (1980) Light-induced aggregation in cultured melanophores: spectral sensitivity and inhibitory effects of theophylline and cyclic adenosine 3–5 monophosphaste. Journal of Cell Science, 41, 65–74.

    Google Scholar 

  • Weber, W. (1983) Photosensitivity of Chromatophores. American Zoology, 23, 495–506.

    Google Scholar 

  • Wolken, J. J and Mogus, M. A. (1979) Extra-ocular photo-sensitivity. Photochemistry & Photobiology,29, 189–196.

    Google Scholar 

  • Yoshikawa, T. and Oishi, T. (1998) Extraretinal photoreception and cricadian systems in nonmammalian vertebrates. Comparative Biochemistry and Physiology, 119B(1), 65–72.

    Google Scholar 

  • Yoshikawa, T., Okano, T., Oishi, T. and Fukada, Y. (1998) A deep brain photoreceptive molecule in the toad hypothalamus. FEBS Letters, 424, 69–72.

    Google Scholar 

  • Yoshikawa, T., Y. Yashiro, T. Oishi, K. Kokame and Y. Fukada (1994) Immunoreactivities to rhodopsin and rod/cone transducin antisera in the retina, pineal complex and deep brain of the Bullfrog, Rana catesbeiana. Zoological Science, 11, 675–680.

    CAS  Google Scholar 

  • Young, J. Z. (1935a) The photoreceptors of lampreys I. Light-sensitive fibers in the lateral line nerves. Journal of Experimental Biology, 12, 229–238.

    CAS  Google Scholar 

  • Young, J. Z. (1935b) The photoreceptors of lampreys II. The functions of the pineal complex. Journal of Experimental Biology, 12, 254–270.

    Google Scholar 

  • Young, J. Z. (1962) The life of the vertebrates. Oxford: The Clarendon Press.

    Google Scholar 

  • Zimmerman, K. and Heatwole, H. (1990) Cutaneous photoreception: a new sensory mechanism for reptiles. Copeia, 860–862.

    Google Scholar 

  • Zucker, R. M. and Nolte, J. (1981) A search for the photoreceptor in the photosensitive irises of normally pigmented and albino hamsters (Mesocricetus auratus). Current Eye Research, 1(1): 9–18.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Shand, J., Foster, R.G. (1999). The extraretinal photoreceptors of non-mammalian vertebrates. In: Archer, S.N., Djamgoz, M.B.A., Loew, E.R., Partridge, J.C., Vallerga, S. (eds) Adaptive Mechanisms in the Ecology of Vision. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0619-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0619-3_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5124-0

  • Online ISBN: 978-94-017-0619-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics