Skip to main content

Functional organization of the outer retina in aquatic and terrestrial vertebrates: comparative aspects and possible significance to the ecology of vision

  • Chapter
Adaptive Mechanisms in the Ecology of Vision

Abstract

The visual world is extremely diverse in several different respects. For example, the intensity of terrestrial illumination can vary by 1010–1011 times, even during the course of one day. Visual conditions are made even more complex after light enters under water due to the additional effects of scattering. Thus, depending upon the type of water (e.g. freshwater, brackish vs. ocean), the quality and quantity of suspended material, depth, season and viewing angle, visual including chromatic factors can change significantly (e.g. Loew and McFarland, 1990). Migratory aquatic animals may be subject to an even more dynamic situation as they move vertically or horizontally through their environment. It would follow, therefore, that the visual system, including the retina, must adapt, on varying time scales, in order to retain optimal functional efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abe, H. and Yamamoto, T. Y. (1984) Diurnal changes in synaptic ribbons of rod cells of the turtle. Journal of Ultrastructure Research 86, 246–251.

    PubMed  CAS  Google Scholar 

  • Ahnelt, P. and Kolb, H. (1994) Horizontal cells and cone photoreceptors in human retina: a Golgi-EM study of spectral connectivity. Journal of Comparative Neurology 343, 406–427.

    PubMed  CAS  Google Scholar 

  • Ali, M. A. (1975) Retinomotor responses. In Vision in Fishes: New Approaches in Research ( Ali, M. A. Ed.). Plenum Press, New York. pp. 313–356.

    Google Scholar 

  • Avery, J. A., Bowmaker, J. K., Djamgoz, M. B. A. and Downing, J. E. G. (1983) Ultraviolet receptors in a freshwater fish. Journal of Physiology 334, 23–24 P.

    Google Scholar 

  • Baldridge, W. H. and Ball, A. K. (1991) Background illumination reduces horizontal cell receptive field size in both normal and 6-hydroxydopamine-lesioned goldfish retinas. Visual Neuroscience 7, 441— 450.

    Google Scholar 

  • Baldrige, W. H. and Ball, A. K. (1993) A new type of interplexiform cells in the goldfish retina is PNMT immunoreactive. NeuroReport 4, 1015 —1018.

    Google Scholar 

  • Baldridge, W. H., Marchiafava, R L., Miller, R. G. and Strettoi, E. (1987) Coupling in the absence of gap junctions in the fish double cone: a dye diffusion and freeze fracture study. Journal of Submicroscopic Cytology 19, 545–554.

    Google Scholar 

  • Barlow, H. B., Levick, W. R. and Yoon, M. (1971) Response to single quanta of light in retinal ganglion cells of the cat. Vision Research S3, 87–101.

    PubMed  Google Scholar 

  • Barnes, S. (1995) Photoreceptor synaptic output: neurotransmitter release and photoreceptor coupling. In Neurobiology and Clinical Aspects of the Outer Retina (Djamgoz, M. B. A., Archer, S. N. and Vallerga, S. Eds.). Chapman and Hall, London. pp. 133 —153.

    Google Scholar 

  • Baylor, D. A., Fuortes, M. G. F. and O’Bryan, P. M. (1971) Receptive fields of cones in the retina of the turtle. Journal of Physiology (London) 214, 265–294.

    CAS  Google Scholar 

  • Besharse, J. C. (1992) The ON’-bipolar agonist, L-2-amino-4-phosphonobutyrate, blocks light-evoked cone contraction in Xenopus eye cups. Neurochemical Research 17, 75–80.

    PubMed  CAS  Google Scholar 

  • Besharse, J. C. and Witkovsky, R. (1992) Light evoked contraction of red absorbing cones in the Xenopus retina is maximally sensitive to green light. Visual Neuroscience 8, 243–249.

    PubMed  CAS  Google Scholar 

  • Besharse, J. C. and Iuvone, P. M. (1992) Is dopamine a light adaptive or dark-adaptive modulator in retina? Neurochemistry International 20, 193 —199.

    Google Scholar 

  • Bloomfield, S. A. (1993) A comparison of receptive field and tracer coupling size of horizontal cells in the rabbit retina. Investigative Ophthalmoloy and Visual Science 34, 1153.

    Google Scholar 

  • Bloomfield, S. A. and Miller, R. E (1982) A physiological and morphological study of the horizontal cell types of the rabbit retina. Journal of Comparative Neurology 208, 288–303.

    PubMed  CAS  Google Scholar 

  • Boatright, J. H., Hoel, M. J. and Iuvone, P. M. (1989) Stimulation of endogenous dopamine release and metabolism in amphibian retina by light-and K’-evoked depolarization. Brain Research 482, 164 —168.

    Google Scholar 

  • Borges, S. and Wilson, M. (1987) Structure of the receptive fields of bipolar cells in the salamander retina. Journal of Neurophysiology 58, 1275 —1291.

    Google Scholar 

  • Bowmaker, J. K. (1984) Microspectrophotometry of vertebrate photoreceptors: a brief review. Vision Research 24, 1641–1650.

    PubMed  CAS  Google Scholar 

  • Bowmaker, J. K. and Kunz, Y. W. (1987) Ultraviolet receptors, tetrachromatic colour vision and retinal mosaics in the brown trout (Salmo trutta), age-dependent changes. Vision Research 27, 2101— 2108.

    Google Scholar 

  • Bowmaker, J. K., Thorpe, A. and Douglas, R. H. (1991) Ultraviolet sensitive cones in the goldfish. Vision Research 31, 349–352.

    PubMed  CAS  Google Scholar 

  • Boycott, B. B. and Kolb, H. (1973a) The connection between the bipolar cells and photoreceptors in the retina of the domestic cat. Journal of Comparative Neurology 148, 91–114.

    PubMed  CAS  Google Scholar 

  • Boycott, B. B. and Kolb, H. (1973b) The horizontal cells of the rhesus monkey retina. Journal of Comparative Neurology 148, 115 —139.

    Google Scholar 

  • Boycott, B. B. and Wässle, H. (1991) Morphological classification of bipolar cells of the primate retina. European Journal of Neuroscience, 3, 1069 —1088.

    Google Scholar 

  • Brandon, C. and Lam, D. M.-K. (1983) The ultrastructure of rat rod synaptic terminals: Effects of dark adaptation. Journal of Comparative Neurology 217, 167–175.

    PubMed  CAS  Google Scholar 

  • Braun, S. C., Kröger, R. H. H. and Wagner, H.-J. (1997) Connectivity patterns of cone horizontal cells in blue acara (Aequidens pulcher, Cichlidae) reared in different light regimes. Neuroscience Letters 235, 145 —148.

    Google Scholar 

  • Bugnon, O., Schaad, N. C. and Schorderet, M. (1994) Nitric oxide modulates endogenous dopamine release in bovine retina. Neuro Report 5, 401— 40.

    Google Scholar 

  • Burkhardt, D. (1977) Responses and receptive field organization of cones in perch retina. Journal of Neurophysiology 40, 53–62.

    PubMed  CAS  Google Scholar 

  • Burkhardt, D. (1986) Functional properties of twin and double cones. Neuroscience Research, Supplement, 4, S554 - S558.

    Google Scholar 

  • Burnside, B. and Nagle, B. (1983) Retinomotor movements of photoreceptors and retinal pigment epithelium: Mechanisms and regulation. Progress in Retinal Research 2, 67–109.

    CAS  Google Scholar 

  • Byzov, A. L. and Shura-Bura, T. M. (1986) Electrical feedback mechanism in the processing of signals in the outer plexiform layer of the retina. Vision Research 26, 33–44.

    PubMed  CAS  Google Scholar 

  • Byzov, A. L., Golbtzov, K. V. and Trifonov, Y. (1977) The model of mechanisms of feedback between horizontal cells and photoreceptors in the vertebrate retina. In Vertebrate Photoreceptors ( Barlow, H. B. and Fatt, P. Eds.). Academic Press, New York. pp. 265–274.

    Google Scholar 

  • Cajal, S. R. y (1892) La rétine des vertébrés. La cellule 9, 17— 257.

    Google Scholar 

  • Cameron, D. A. and Pugh, E. N. Jr. (1991) Double cones as a basis for a new type of polarization vision in vertebrates. Nature 353, 161–164.

    PubMed  CAS  Google Scholar 

  • Cohen, A. I. (1965) Some electron microscopic observations on inter-receptor contacts in the human and macaque retinae. Journal of Anatomy 99, 595 —610.

    Google Scholar 

  • Copenhagen, D. R. and Jahr, C. E. (1989) Release of endogenous excitatory amino acids from turtle photoreceptors. Nature 341, 5365–539.

    Google Scholar 

  • Cragg, B. G. (1972) Plasticity of synapses. In Bourne, G. H. ed. The Structure and Function of Nervous Tissue, New York, Academic Press, Vol. IV, pp. 1— 60.

    Google Scholar 

  • Dacey, D. M. (1989) Axon-bearing amacrine cells of the macaque monkey retina. Journal of Comparative Neurology 284, 175 —193.

    Google Scholar 

  • Dacey, D. M. (1990) The dopaminergic amacrine cell. Journal of Comparative Neurology 301, 461— 489.

    Google Scholar 

  • Dacey, D. M. (1996) Circuitry for color coding in the primate retina. Proceedings of the National Academy of Science (U.S.A.) 93, 582–588.

    CAS  Google Scholar 

  • Dacey, D. M., Lee, B. B., Stafford, D. K., Pokorny, J. and Smith, V. C. (1996) Horizontal cells of the primate retina: cone specificity without spectral opponency. Science 271, 656–659.

    PubMed  CAS  Google Scholar 

  • Dacheux, R. F. and Raviola, E. (1982) Horizontal cells in the retina of the rabbit. Journal of Neuroscience 2, 1486 —1493.

    Google Scholar 

  • Dacheux, R. F. and Raviola, E. (1986) The rod pathway in the rabbit retina: a depolarizing bipolar and amacrine cell. Journal of Neuroscience 6, 331— 345.

    Google Scholar 

  • Daw, N. W. (1968) Colour-coded ganglion cells in the goldfish retina. Extension of their receptive fields by means of new stimuli. Journal of Physiology (London) 197, 567— 592.

    Google Scholar 

  • Detwiler, P. B., Hodgkin, A. L. and McNaughton, P. A. (1978) A surprising property of electrical spread in the network of rods in the turtle’s retina. Nature 274, 562–565.

    PubMed  CAS  Google Scholar 

  • Djamgoz, M. B. A. and Ruddock, K. H. (1979) Effects of picrotoxin and strychnine on fish retinal Spotentials: evidence for inhibitory control of depolarizing responses. Neuroscience Letters 12, 329–334.

    PubMed  CAS  Google Scholar 

  • Djamgoz, M. B. A. (1995) Diversity of GABA receptors in the vertebrate outer retina. Trends in Neurosciences 18, 118 —120.

    Google Scholar 

  • Djamgoz, M. B. A., Petruv, R., Yasui, S., Furukawa, T. and Yamada (1998) Modulation of chromatic difference in receptive field size of H1 horizontal cells in carp retina: dopamine-and APB-sensitive mechanisms. Neuroscience Research. 30, 13–24.

    PubMed  CAS  Google Scholar 

  • Djamgoz, M. B. A. and Downing, J. E. G. (1988) A horizontal cell selectively contacts blue-sensitive cones in cyprinid fish retina: intracellular staining with horseradish peroxidase. Proceedings of the Royal Society of London B 235, 281— 287.

    Google Scholar 

  • Djamgoz, M. B. A. and Greenstreet, E. H. (1996) Quantitative analysis of triphasic (H3) horizontal cell-cone connectivity in the cyprinid fish (roach) retina. Vision Research 36, 4007— 4014.

    Google Scholar 

  • Djamgoz, M. B. A. and Petruv, R. (1995) Spatio-chromatic signalling in the vertebrate retina. In Basic and Clinical Perspectives in Vision Research (Robbins, J., Djamgoz, M. B. A. and Taylor, A. Eds.). Plenum Press, New York. pp. 77— 94.

    Google Scholar 

  • Djamgoz, M. B. A. and Wagner, H.-J. (1992) Localization and function of dopamine in the adult vertebrate retina. Neurochemistry International, 20, 139 —191.

    Google Scholar 

  • Djamgoz, M. B. A. and Yamada, M. (1990) Electrophysiological characteristics of retinal neurones: synaptic interactions and functional outputs. In The Visual System of Fish ( Douglas, R. and Djamgoz, M. B. A., Eds.). Chapman and Hall, London. pp. 159–210.

    Google Scholar 

  • Djamgoz, M. B. A. and Yamada, M. (1992) Dopamine and light adaptation sharpen the spectral response of Hl horizontal cells in carp retina. Neuroscience Research Communications 10, 149 —153.

    Google Scholar 

  • Djamgoz, M. B. A., Downing, J. E. G., Kirsch, M., Prince, D. J. and Wagner, H.-J. (1988) Plasticity of cone horizontal cell functions in cyprinid fish retina: Effects of background illumination of moderate intensity. Journal of Neurocytology 17, 701–710.

    PubMed  CAS  Google Scholar 

  • Djamgoz, M. B. A., Kirsch, M. and Wagner, H.-J. (1989) Haloperidol suppresses light-induced spinule formation and biphasic responses of horizontal cells in fish (roach) retina. Neuroscience Letters 107, 200–204.

    PubMed  CAS  Google Scholar 

  • Djamgoz, M. B. A., Archer, S. N. and Vallerga, S. (1995a) Neurobiology and Clinical Aspects of the Outer Retina. Chapman and Hall, London.

    Google Scholar 

  • Djamgoz, M. B. A., Cunningham, J. R., Davenport, S. L. and Neal, M. J. (1995b) Nitric oxide inhibits depolarization-induced release of endogenous dopamine in the rabbit retina. Neuroscience Letters 198, 33–36.

    PubMed  CAS  Google Scholar 

  • Djamgoz, M. B. A., Evans-Capp, A. J. and Wagner, H.-J. (1996a) Infra-vitreal injection of substance P antibodies as an antagonist in the vertebrate (fish) retina. Journal of Neuroscience Methods 64, 237— 243.

    Google Scholar 

  • Djamgoz, M. B. A., Fitzgerald, E. M. and Yamada, M. (1996b) Spectral plasticity of H1 horizontal cells in carp retina: Independent modulation by dopamine and light adaptation. European Journal of Neuroscience 8, 1571–1579.

    PubMed  CAS  Google Scholar 

  • Djamgoz, M. B. A., Hankins, M. W., Hirano, J. and Archer, S. N. (1997) Neurobiology of retinal dopamine in relation to degenerative states of the tissue. Vision Research 37, 3509–3529.

    PubMed  CAS  Google Scholar 

  • Donati, G., Pournaras, C. J., Munoz, J.-L., Poitry, S., Poitry-Yamate, C. L. and Tsacopoulos, M. (1995) Nitric oxide controls arteriolar tone in the retina of the miniature pig. Investigate Ophthalmology and Visual Science 36, 2228–2237.

    CAS  Google Scholar 

  • Douglas, R. H. and Djamgoz, M. B. A. (1990) The Visual System of Fish. Chapman and Hall, London.

    Google Scholar 

  • Douglas, R. H., Wagner, H-J., Zaunreiter, M., Behrens, U. D. and Djamgoz, M. B. A. (1992) The effect of dopamine depletion on light-evoked and circadian retinomotor movements in the teleost retina. Visual Neuroscience, 9, 335–343.

    PubMed  CAS  Google Scholar 

  • Dowling, J. E. and Boycott, B. B. (1966) Organization of the primate retina: electron microscopy. Proceedings of the Royal Society of London, B, 116, 80 —111.

    Google Scholar 

  • Dowling, J. E. and Ehinger, B. (1975) Synaptic organisation of the amine-containing interplexion cells of the goldfish and Cebus monkey retinas. Science 188, 270–273.

    PubMed  CAS  Google Scholar 

  • Downing, J. E. G. and Djamgoz, M. B. A. (1989) Quantitative analysis of cone photoreceptor-horizontal cell connectivity patterns in the retina of a cyprinid fish: Electron microscopy of functionally-identified and HRP-labelled horizontal cells. Journal of Comparative Neurology 289, 537— 553.

    Google Scholar 

  • Downing, J. E. G., Djamgoz, M. B. A. and Bowmaker, J. K. (1986) Photoreceptors of a cyprinid fish, the roach: morphological and spectral characteristics. Journal of Comparative Physiology 159, 859–868.

    Google Scholar 

  • Ehinger, B. and Falck, B. (1969) Adrenergic retinal neurons of some new world monkeys. Zeitschrift für Zellforschung und mikroskopische Anatomie 100, 364–375.

    PubMed  CAS  Google Scholar 

  • Euler, T. and Wässle, H. (1995) Immunocytochemical identification of cone bipolar cells in the rat retina. Journal of Comparative Neurology 361, 461— 478.

    Google Scholar 

  • Falk, G. and Shiells, R. A. (1995) On-biopolar cells, visual sensitivity and the b-wave. In Basic and Clinical Perspectives in Vision Research (Robbins, J., Djamgoz, M. B. A. and Taylor, A. Eds.). Plenum Press, New York. pp. 95 —102.

    Google Scholar 

  • Famiglietti, E. V. Jr (1990) A new type of wide-field horizontal cell, presumably linked to blue cones, in rabbit retina. Brain Research 535, 174 —179.

    Google Scholar 

  • Famiglietti, E. V. Jr and Kolb, H. (1976) Structural basis for ON- and OFF-centre responses in the retinal ganglion cells. Science 194, 193 —195.

    Google Scholar 

  • Famiglietti, E. V. Jr., Kaneko, A. and Tachibana, M. (1977) Neuronal architecture of on and off pathways to ganglion cells of the carp retina. Science 198, 1267–1269.

    PubMed  Google Scholar 

  • Fisher, S. K. and Boycott, B. B. (1974) Synaptic connections made by horizontal cells within the outer plexiform layer of the retina of the cat and the rabbit. Proceedings of the Royal Society of London B 186, 317— 331.

    Google Scholar 

  • Fröhlich, E., Negishi, K. and Wagner, H.-J. (1995) The occurrence of dopaminergic interplexiform cells correlates with the presence of cones in the retinae of fish. Visual Neuroscience 12, 359–369.

    PubMed  Google Scholar 

  • Furukawa, T., Yamada, M., Petruv, R., Djamgoz, M. B. A. and Yasui, S. (1997) Nitric oxide, 2-amino-4phosphonobutyric acid and light/dark adaptation modulate short-wavelength-sensitive synaptic transmission to retinal horizontal cells. Neuroscience Research, 27, 65 —74.

    Google Scholar 

  • Gallego, A. (1971) Horizontal and amacrine cells in the mammal’s retina. Vision Research 3, 33–50.

    PubMed  Google Scholar 

  • Gallego, A. (1985) Advances in horizontal cell terminology since Cajal. In Neurocircuitry of the Retina, A Cajal Memorial (Gallego, A. and Gouras, P. Eds.). Elsevier, Amsterdam. pp. 122 —140.

    Google Scholar 

  • Gold, G. H. (1979) Photoreceptor coupling in the retina of the toad, Bufo marinus II. Physiology. Journal of Neurophysiology 42, 311— 328.

    Google Scholar 

  • Gold, G. H. and Dowling, J. E. (1979) Photoreceptor coupling in the retina of the toad, Bufo marinus. I. Anatomy. Journal of Neurophysiology 42, 292–310.

    PubMed  CAS  Google Scholar 

  • Gouras, P. and Zrenner, E. (1981) Color coding in primate retina. Vision Research 21, 1591–1598.

    PubMed  CAS  Google Scholar 

  • Grant, G. B. and Dowling, J. E. (1995) A glutamate-activated chloride current in cone-driven ON bipolar cells of the white perch retina. Journal of Neuroscience 15, 3852–3862.

    PubMed  CAS  Google Scholar 

  • Grant G. B. and Dowling, J. E. (1996) ON bipolar cell responses in the teleost retina are generated by two distinct mechanisms. Journal of Neurophysiology 76, 3842–3849.

    PubMed  CAS  Google Scholar 

  • Greenstreet, E. H. and Djamgoz, M. B. A. (1994a) Triphasic chromaticity-type horizontal cells selectivity contact short wavelength-sensitive cone photoreceptors in the retina of a cyprinid fish Rutilus rutilus. Proceedings of the Royal Society of London B 256, 227— 230.

    Google Scholar 

  • Greenstreet, E. H. and Djamgoz, M. B. A. (1994b) Nitric oxide induces light-adaptive morphological changes in retinal neurones. NeuroReport 6, 109 —112.

    Google Scholar 

  • Greferath, U., Grünert, U. and Wässle, H. (1990) Rod bipolar cells in the mammalian retina show protein kinase C-like immunoreactivity. Journal of Comparative Neurology 301, 433–442.

    PubMed  CAS  Google Scholar 

  • Haesendonck, E. van and Missotten, L. (1983a) Interbipolar contacts in the dorsal inner plexiform layer in the retina of Callionymus lyra L. Journal of Ultrastructure Research 83, 303–311.

    Google Scholar 

  • Haesendonck, E. van and Missotten, L. (1983b) Stratification and square pattern of arrangements in the dorsal inner plexiform layer in the retina of Callionymus lyra L. Journal of Ultrastructure Research 83, 296–302.

    Google Scholar 

  • Haesendonck, E. Van, Marc, R. E. and Missotten, L. (1993) New aspects of dopaminergic interplexiform cell organisation in the goldfish retina. Journal of Comparative Neurology 333, 503–518.

    PubMed  Google Scholar 

  • Hankins, M. W. (1995) Horizontal cell coupling and its regulation. In Neurobiology and Clinical Aspects of the Outer Retina ( Djamgoz, M. B. A., Archer, S. N. and Vallerga, S. Eds.). Chapman and Hall, London. pp. 195–220.

    Google Scholar 

  • Hankins, M. W. and Ikeda, H. (1991a) Non-NMDA type excitatory amino acid receptors mediate rod input to horizontal cells in the isolated rat retina. Vision Research 31, 609–617.

    PubMed  CAS  Google Scholar 

  • Hankins, M. W. and Ikeda, H. (1991b) The role of dopaminergic pathways at the outer plexiform layer of the mammalian retina. Clinical Vision Sciences 31, 87— 93.

    Google Scholar 

  • Hankins, M. W. and Ikeda, H. (1993) Dopamine pathways in the outer mammalian retina and abnormalities expressed in hereditary retinal dystrophy. Zdravinski vestnik 62 Supp. 1, 33–38.

    Google Scholar 

  • Hare, W. A. and Owen, W. G. (1992) Effects of 2-amino-4-phosphonobutyric acid on cells in the distal layers of the tiger salamander retina. Journal of Physiology (London) 445, 741–757.

    CAS  Google Scholar 

  • Hashimoto, Y., Haros, F. I., Ueki, K. and Fukurotani, I-I. (1988) Ultraviolet-sensitive cones in the color-coding systems of cyprinid retinas. Neuroscience Research, Suppl. 8, S81— S95.

    Google Scholar 

  • Helmholtz, H. v. (1896) Handbuch der Physiologischen Optik. Hamburg and Leipzig, Leopold Voss.

    Google Scholar 

  • Hermes, B., Reuss, S. and Vollrath, L. (1992) Synaptic ribbons, spheres and intermediate structures in the developing retina. International Journal of Developmental Neuroscience 10, 215–223.

    PubMed  CAS  Google Scholar 

  • Hibbard, E. (1971) Grid patterns in the retinal organization of the cichlid fish Astronotus ocellatus. Experimental Eye Research 12, 175 —180.

    Google Scholar 

  • Hirano, A. A. and MacLeish, P. R. (1991) Glutamate and 2-amino-4-phosphonobutyrate evoke an increase in potassium conductance in retinal bipolar cells. Proceedings of the National Academy of Science (U.S.A.) 88, 805–809.

    CAS  Google Scholar 

  • Ishida, A. T., Stell, W. K. and Lightfoot, D. O. (1980) Rod and cone inputs to bipolar cells in goldfish retina. Journal of Comparative Neurology 191, 315–335.

    PubMed  CAS  Google Scholar 

  • Kalloniatis, M. K. and Marc, R. E. (1990) Interplexiform cells of the goldfish retina. Journal of Comparative Neurology 297, 340–358.

    PubMed  CAS  Google Scholar 

  • Kamermans, M., van Dijk, B. W. and Spekreijse, H. (1989a) Lateral feedback from monophasic horizontal cells in carp retina. I. Experiments. Journal of General Physiology 97, 819–843.

    Google Scholar 

  • Kamermans, M., van Dijk, B. W., Spekreijse, H. and Zweypfenning, R. C. V. J. (1986b) Lateral feedback from monophasic horizontal cells in carp retina. II. A quantitative model. Journal of General Physiology 93, 681— 694.

    Google Scholar 

  • Kaneko, A. (1970) Physiological and morphological identification of horizontal, bipolar and amacrine cells in goldfish retina. Journal of Physiology (London) 207, 623–633.

    CAS  Google Scholar 

  • Kaneko, A. (1973) Receptive field organization of bipolar and amarcrine cells in the goldfish retina. Journal of Physiology (London) 235, 133 —153.

    Google Scholar 

  • Kaneko, A. and Stuart, A. E. (1984) Coupling between horizontal cells in the carp retina revealed by diffusion of Lucifer Yellow. Neuroscience Letters 47, 1— 4.

    Google Scholar 

  • Kaneko, A. and Shimazaki, H. (1975) Effects of external ions on the synaptic transmission from photoreceptors to horizontal cells in the carp retina. Journal of Physiology (London) 252, 509–522.

    CAS  Google Scholar 

  • Kaneko, A. and Tachibana, M. (1981) Retinal bipolar cells with double colour-opponent receptive fields. Nature 293, 220–222.

    PubMed  CAS  Google Scholar 

  • Kaneko, A. and Tachibana, M. (1983) Double colour opponent receptive fields of carp bipolar cells. Vision Research 23, 381— 388.

    Google Scholar 

  • Kawamura, S. (1995) Phototransduction, excitation and adaptation. In Neurobiology and Clinical Aspects of the Outer Retina (Djamgoz, M. B. A., Archer, S. N. and Vallerga, S. Eds.). Chapman and Hall, London. pp. 105 —131.

    Google Scholar 

  • Kirsch, M., Djamgoz, M. B. A. and Wagner, H.-J. (1990) Correlation of spinule dynamics and plasticity of the horizontal cell spectral response in cyprinid fish retina: quantitative analysis. Cell Tissue Research 260, 123 —130.

    Google Scholar 

  • Kirsch, M. and Wagner H.-J. (1989) Release pattern of endogenous dopamine in teleost retinae during light adaptation and pharmacological stimulation. Vision Research 29, 147–154.

    PubMed  CAS  Google Scholar 

  • Kirsch, M., Wagner, H.-J. and Djamgoz, M. B. A. (1991) Dopamine and plasticity of horizontal cell function in the teleost retina: regulation of a spectral mechanism through D1 receptors. Vision Research 31, 401–412.

    PubMed  CAS  Google Scholar 

  • Knapp, A. G. and Dowling, J. E. (1987) Dopamine enhances excitatory amino acid-gated conductances in horizontal cells. Nature, 325, 437— 439.

    Google Scholar 

  • Kolb, H. (1970) Organization of the outer plexiform layer of the primate retina: electron microscopy of Golgi impregnated cells. Philosophical Transactions of the Royal Society of London B 258, 261— 283.

    Google Scholar 

  • Kolb, H. (1974) The connections between horizontal cells and photoreceptors in the retina of the cat. Electron microscopy of Golgi preparations. Journal of Comparative Neurology 155, 1–14.

    PubMed  CAS  Google Scholar 

  • Kolb, H. (1977) The organization of the outer plexiform layer in the retina of the cat. Investigate Ophthalmology and Visual Science 6, 131–153.

    CAS  Google Scholar 

  • Kolb, H. (1979) The inner plexiform layer of the retina of the cat. Electron microscopic observations. Journal of Neurocytology 8, 295–329.

    PubMed  CAS  Google Scholar 

  • Kolb, H. and Famiglietti, E. V. (1976) Rod and cone pathways in the retina of the cat. Investigative Ophthalmology and Visual Science 15, 935–946.

    Google Scholar 

  • Kolb, H. and Nelson, R. (1995) The organization of photoreceptor to bipolar synapses in the outer plexiform layer. In Neurobiology and Clinical Aspects of the Outer Retina ( Djamgoz, M. B. A., Archer, S. N. and Vallerga, S. Eds.). Chapman and Hall, London. pp. 273–296.

    Google Scholar 

  • Kolb, H. Cuenca, N., Wang, H.-H. and Decorver, L. (1990) The synaptic organization of the dopaminergic amacrine cell in the cat retina. Journal of Neumcytology 19, 343–366.

    CAS  Google Scholar 

  • Kolb, H., Linberg, K. A. and Fisher, S. K. (1992) Neurons of the human retina: A Golgi study. Journal of Comparative Neurology 318, 147–187.

    PubMed  CAS  Google Scholar 

  • Kouyama, N. and Watanabe, K. (1986) Gap-junctional contacts of luminosity-type horizontal cells in the carp retina: a novel pathway of signal conduction from the cell body to the axon terminal. Journal of Comparative Neurology 249, 404–410.

    PubMed  CAS  Google Scholar 

  • Kraft, T. W. and Burkhardt, D. A. (1986) Telodendrites of cone photoreceptors: structure and probable function. Journal of Comparative Neurology 249, 13–27.

    PubMed  CAS  Google Scholar 

  • Krizaj, D., Akopian A. and Witkovsky, P. (1994) The effects of L-glutamate, AMPA, quisqualate and kainate on retinal horizontal cells depend on adaptational state: implications for rod-cone interactions. Journal of Neuroscience 14, 5661— 5671.

    Google Scholar 

  • Kurz-Isler, G. and Wolburg. H. (1986) Gap junctions between horizontal cells in the cyprinid fish alter rapidly their structure during light and dark adaptation. Neuroscience Letters 67, 7–12.

    PubMed  CAS  Google Scholar 

  • Lagnado, L. and Baylor, D. (1992) Signal flow in visual transduction. Neuron 8, 995 —1002.

    Google Scholar 

  • Lamb, T. D. and Simon, E. J. (1976) The relation between intercellular coupling and electrical noise in turtle photoreceptors. Journal of Physiology (London) 263, 257— 286.

    Google Scholar 

  • Lasansky, A. (1973) Organization of the outer synaptic layer in the retina of the larval tiger salamander. Philosophical Transactions of the Royal Society of London B 265, 471— 489.

    Google Scholar 

  • Levine, J. S. and MacNichol, E. F. (1979) Visual pigments in teleost fishes: effects of habitat, microhabitat and behaviour on visual system evolution. Sensory Processes 3, 95 —130.

    Google Scholar 

  • Liebman, P. A. and Entine, G. (1968) Visual pigments of frog and tadpole (Rana pipiens.) Vision Research 8, 761–775.

    PubMed  CAS  Google Scholar 

  • Linberg, K. A., Suemune, S. and Fisher, S. K. (1996) Retinal neurons of the California ground squirrel, Spermophilus beecheyi: A. Golgi study. Journal of Comparative Neurology 365, 173–216.

    PubMed  CAS  Google Scholar 

  • Lipetz, L. E. and Kaneko, A. (1984) Receptive field properties of the photopic luminosity horizontal cells of carp retina. Vision Research 24, 1947–1950.

    PubMed  CAS  Google Scholar 

  • Locket, N. A. (1977) Adaptations to the deep-sea environment In: Crescitelli, F. ed. The Visual System of Vertebrates; Handbook of Sensory Physiology, Volume VI I5, Berlin, Heidelberg, Springer verlag, pp. 67–192.

    Google Scholar 

  • Lockhart M. E. and Stell, W. K. (1979) Invaginating telodendria: a pathway for color-specific interconnections between goldfish cones. Investigative Ophthalmology and Visual Science (Suppl.), 19, 92.

    Google Scholar 

  • Loew, E. R. and McFarland, W. N. (1990) The underwater visual environment. In The Visual System of Fish (Douglas, R. H. and Djamgoz, M. B. A. Eds.). Chapman and Hall, London. pp. 1— 43.

    Google Scholar 

  • Lu, C. and McMahon, D. G. (1997) Modulation of hybrid bass retinal gap junctional channel gating by nitric oxide. Journal of Physiology (London) 499, 689–699.

    CAS  Google Scholar 

  • MacNichol, E. F. and Svaetichin, G. (1958) Electrical responses from the isolated retinas of fishes: American Journal of Ophthalmology 46, 26–40.

    PubMed  CAS  Google Scholar 

  • Mangel, S. C. (1991) Analysis of horizontal cell contribution to the receptive field surround of ganglion cells in the rabbit retina. Journal of Physiology (London) 442, 211— 234.

    Google Scholar 

  • Marc, R. E. (1986) The development of retinal networks. In The Retina: a Model for Cell Biology (Adler, R. and Farber, D. Eds.). Academic Press, New York. pp. 17— 65.

    Google Scholar 

  • Marc, R. E. (1989) Evolution of retinal circuits. In Neural Mechanisms of Behaviour (Erber, Menzel, R., Pflüger, H.-J. and Todt, D. Eds.). Thieme, Stuttgart, pp. 146 —147.

    Google Scholar 

  • Marc, R. E. (1992) The structure of GABAergic circuits in ectotherm retinas. In GABA in the Retina and the Central Visual System (Mize, R., Marc, R. E. and Sillito, A. Eds.). Elsevier, Amersterdam, pp. 61— 92.

    Google Scholar 

  • Marc, R. E. (1995) Interplexiform cell connectivity in the outer retina. In Neurobiology and Clinical Aspects of the Outer Retina ( Djamgoz, M. B. A., Archer, S. N. and Vallerga, S. Eds.). Chapman and Hall, London. pp. 369–393.

    Google Scholar 

  • Marc, R. E. and Lam, D. M. K. (1981) Glycinergic pathways in the goldfish retina. Journal of Neuroscience 1, 152 —165.

    Google Scholar 

  • Marc, R. E., Stell, W. K., Bok, D. and Lam, D. M. K. (1978) GABAergic pathways in the goldfish retina. Journal of Comparative Neurology 182, 221— 246.

    Google Scholar 

  • Marc, R. E., Liu, W.-L.S. and Muller, J. F. (1988) Gap junctions in the inner plexiform layer of the goldfish retina. Vision Research 28, 9–24.

    PubMed  CAS  Google Scholar 

  • Marchiafava, P. L. (1985) Cell coupling in double cones of the fish retina. Proceedings of the Royal Society of London B 226, 211— 215.

    Google Scholar 

  • Mariani, A. P. (1983) Giant bistratified bipolar cells in the monkey retina. Anatomical Record 206, 215–220.

    Google Scholar 

  • Mariani, A. P. (1984) Bipolar cells in the monkey retina selective for cones likely to be blue sensitive. Nature 308, 184 —186.

    Google Scholar 

  • Marshak, D. W. and Dowling, J. E. (1987) Synapses of cone horizontal cell axons in goldfish retina. Journal of Comparative Neurology 256, 430–443.

    PubMed  CAS  Google Scholar 

  • McGuire, B. A., Stevens, J. K. and Sterling, P. (1984) Microcircuitry of bipolar cells in cat retina. Journal of Neuroscience 4, 2920–2938.

    PubMed  CAS  Google Scholar 

  • McGuire, B. A., Stevens. J. K. and Sterling, R. (1986) Microcircuitry of beta ganglion cells in cat retina. Journal of Neuroscience 6, 907— 918.

    Google Scholar 

  • McMahon, D. G., Knapp, A. G. and Dowling, J. E. (1989) Horizontal cell gap junctions: single-channel conductance and modulation by dopamine. Proceedings of the National Academy of Science (U.S.A.) 86, 7639 —7643.

    Google Scholar 

  • Merchant, V. and Barnes, S. (1991) Lateral sign propagation via cone telodendrites in tiger salamander retina. Society for Neuroscience Abstrates 17, 298.

    Google Scholar 

  • Miguel, E. de, and Wagner, H-J. (1990) Tyrosine hydroxylase immunoreactive interplexiform cells in the lamprey retina. Neuroscience Letters 113, 151–155.

    PubMed  Google Scholar 

  • Miller, J. L. and Korenbrot, J. I. (1993) Phototransduction and adaptation in rods, single cones and twin cones of the striped bass retina: a comparative study. Visual Neuroscience 10, 653–667.

    PubMed  CAS  Google Scholar 

  • Miyachi, E-I., Murakami, M. and Nakaki, T. (1990) Arginine blocks gap junctions between retinal horizontal cells. NeuroReport 1, 107–110.

    PubMed  CAS  Google Scholar 

  • Mountford, S. (1963) Effects of light and dark adaptation on the vesicle population of receptor-bipolar synapses. Journal of Ultrastructure Research 9, 403–419.

    Google Scholar 

  • Murakami, M., Shiomoda, Y. and Nakatani, K. (1978) Effects of GABA on neuronal activities in the distal retina of the carp. Sensory Processes 2, 334–338.

    PubMed  CAS  Google Scholar 

  • Murakami, M., Shimoda, Y., Nakatani, K., Miyachi, E. and Watanabe, S. (1982) GABA-mediated negative feedback from horizontal cells to cones in carp retina. Japanese Journal of Physiology 32, 911— 935.

    Google Scholar 

  • Myhr, K. L., Dong, C-J. and McReynolds, J. S. (1994) Cones contribute to light-evoked, dopamine-medi-ated uncoupling of horizontal cells in the mudpuppy retina. Journal of Neurophysiology 72, 56–62.

    PubMed  CAS  Google Scholar 

  • Naka, K. I. and Rushton, W. A. H. (1967) The generation and spread of S-potentials in fish (Cyprinidae). Journal of Physiology (London) 192, 437— 461.

    Google Scholar 

  • Nakamura, Y., McGuire, B. A. and Sterling, P. (1980) Interplexiform cell in cat retina: identification by uptake of gamma-(3H)-aminobutyric acid serial reconstruction. Proceedings of the National Academy of Sciences (U.S.A.) 77, 658–661.

    CAS  Google Scholar 

  • Nakanishi, S. (1992) Molecular diversity of glutamate receptors and implications for brain function. Science 258, 597— 603.

    Google Scholar 

  • Nawy, S. and Jahr, C. E. (1990) Suppression by glutamate of cGMP-activated conductance in retinal bipolar cells. Nature 346, 269–271.

    PubMed  CAS  Google Scholar 

  • Neal, M. J., Cunningham, J. R. and Matthews, K. (1998) Selective release of nitric oxide from retinal amacrine and bipolar cells. Investigate Ophthalmology and Visual Science 39, 850–853.

    CAS  Google Scholar 

  • Negishi, K., Teanishi, T. and Kato, S. (1990) The dopamine system of the teleost fish retina. Progress in Retinal Research 9, 1— 48.

    Google Scholar 

  • Nelson, R. (1977) Cat cones have rod input: a comparison of the response properties of cones and horizontal cell bodies in the retina of the cat. Journal of Comparative Neurology 172, 109 —136.

    Google Scholar 

  • Nelson, R., Lützow, A. S. C., Kolb, H. and Gouras, P. (1975) Horizontal cells in the cat retina with independent dendritic systems. Science 189, 137–139.

    PubMed  CAS  Google Scholar 

  • Nelson, R. (1985) Spectral properties of cat horizontal cells. Neuroscience Research Suppl. 2, S 167— S183.

    Google Scholar 

  • Neumeyer, C. (1986) Wavelength discrimination in the goldfish. Journal of Comparative. Physiology A 158, 203–213.

    Google Scholar 

  • Novales Flamarique, I. and Hawryshyn, C. W. (1997) Is the use of underwater polarized light by fish restricted to crepuscular time periods? Vision Research 37, 975–989.

    Google Scholar 

  • Ohtsuka, T. and Kawamata, K. (1990) Telodendrial contact of HRP-filled photoreceptors in the turtle retina: pathways of photoreceptors coupling. Journal of Comparative Neurology 292, 599–613.

    PubMed  CAS  Google Scholar 

  • Owen, W. G. and Copenhagen, D. R. (1977) Characteristics of the electrical coupling between rods in the turtle retina. In Vertebrate Photoreception (Barlow, H. B. and Fatt, P. Eds.). Academic Press, New York. pp. 169 —192.

    Google Scholar 

  • Parkyn, D. C. and Hawryshyn, C. W. (1993) Polarized light sensitivity in rainbow trout (Oncorynchus mykiss): characterization from multiunit ganglion cell responses in the optic nerve fibres. Journal of Comparative Physiology A 172, 493–500.

    Google Scholar 

  • Peichl, L. (1991) Catecholaminergic amacrine cells in the dog and wolf retina. Visual Neuroscience 7, 575–587.

    PubMed  CAS  Google Scholar 

  • Polyak, S. L. (1941) The Retina. Chicago University Press, Chicago.

    Google Scholar 

  • Pottek, M., Schultz, K. and Weiler, R. (1997) Effects of nitric oxide on the horizontal cell network and dopamine release in the carp retina. Vision Research 37, 1091–1102.

    PubMed  CAS  Google Scholar 

  • Rao-Mirotznik, R., Buchsbaum, G. and Sterling, P. (1994) Rate of quantal transmitter release at a mammalian rod synapse. Biophysical Journal 67, 57— 63.

    Google Scholar 

  • Rao-Mirotznik, R., Harkins, A. B., Buchsbaum, G. and Sterling, P. (1995) Mammalian rod terminal: architecture of a binary synapse. Neuron 14, 561— 569.

    Google Scholar 

  • Raviola, E. and Gilula, N. B. (1973) Gap junctions between photoreceptor cells in the vertebrate retina. Proceedings of the National Academy of Sciences (U.S.A.) 70, 1677— 81.

    Google Scholar 

  • Raviola, E. and Gilula, N. B. (1975) Intramembrane organization of specialized contacts in the outer plexiform layer on the retina. A freeze-fracture study of monkeys and rabbits. Journal of Cell Biology 65, 192.

    PubMed  CAS  Google Scholar 

  • Raviola, E. and Raviola, G. (1982) Structure of the synaptic membranes in the inner plexiform layer of the retina: freeze-fracture study in monkeys and rabbits. Journal of Comparative Neurology 209, 233–248.

    PubMed  CAS  Google Scholar 

  • Raymond, P. A. (1995) Development and morphological organization of photoreceptors. In Neurobiology and Clinical Aspects of the Outer Retina (Djamgoz, M. B. A., Archer, S. N. and Vallerga, S. Eds.). Chapman and Hall, London. pp. 1— 23.

    Google Scholar 

  • Reale, E., Luciano, L. and Spitznas, M. (1978) Communicating junctions of the human sensory retina. Albrecht von Gaefes Archiv fiir experimentelle Ophthamologie 208, 77— 92.

    Google Scholar 

  • Remé, C. E. and Young, R. W. (1977) The effects of hibernation on cone visual cells in the ground squirrel. Investigate Ophthalmology and Visual Science 16, 815–840

    Google Scholar 

  • Ryan, M. K. and Hendrickson, A. E. (1987) Interplexiform cells in macaque monkey retina. Experimental Eye Research 45, 57— 66.

    Google Scholar 

  • Ryder, J. A. (1895) An arrangement of retinal cells in the eyes of fishes partially simulating compound eyes. Proceedings of the National Academy of Science (U.S.A.) 161–166.

    Google Scholar 

  • Saito, T. and Kujiraoka, T. (1982) Physiological and morphological identification of two types of on-centre bipolar cells in the carp retina. Journal of Comparative Neurology 205, 161–170.

    PubMed  CAS  Google Scholar 

  • Saito, T. and Kujiraoka, T. (1988) Characteristics of bipolar-bipolar coupling in the carp retina. Journal of General Physiology 91, 275–287.

    PubMed  CAS  Google Scholar 

  • Saito, T., Kujiraoka, T., Yonaha, T. and Chino, Y. (1985) Re-examination of photoreceptor-bipolar connectivity patterns in carp retina: HRP-EM and Golgi-EM studies. Journal of Comparative Neurology 236, 141–160.

    PubMed  CAS  Google Scholar 

  • Saito, T., Kondo, H. and Toyodo, J-I. (1979) Ionic mechanisms of two types of on-center bipolar cells in the carp retina. I. The responses to central illumination. Journal of General Physiology 73, 73–90.

    PubMed  CAS  Google Scholar 

  • Sakai, H. M. and Naka, K. I. (1986) The synaptic organization of the cone horizontal cells in the catfish retina. Journal of Comparative Neurology 245, 141–160.

    Google Scholar 

  • Sandermann, D., Boycott, B. B. and Peichl, L. (1996a) Blue-cone horizontal cells in the retinae of horses and other equidae. Journal of Neuroscience 16, 3381— 3396.

    Google Scholar 

  • Sandermann, D., Boycott, B. B. and Peichl, L. (1996b) The horizontal cells of artiodactyl retinae: A comparison with Cajal’s description. Visual Neuroscience 13, 735 —746.

    Google Scholar 

  • Schaeffer, S. F. and Raviola, E. (1978) Membrane recycling in the cone cell endings of the turtle retina. Journal of Cell Biology 79, 802–825.

    PubMed  CAS  Google Scholar 

  • Schiller, P. H. (1992) The ON and OFF channels of the visual system. Trends in Neuroscience 15, 86–92.

    CAS  Google Scholar 

  • Scholes, J. H. (1975) Colour receptors and their synaptic connexions in the retina of a cyprinid fish. Philosophical Transactions of the Royal Society of London B 270, 61–118.

    CAS  Google Scholar 

  • Schwartz, E. A. (1975) Cones excite rods in the retina of the turtle. Journal of Physiology (London) 246, 639–651.

    CAS  Google Scholar 

  • Sekaran, S., Matthews, K. L., Cunningham, J. R., Neal, M. J. and Djamgoz, M. B. A. (1998) Nitric oxide release during light adaptation of the carp retina. Journal of Physiology. In press.

    Google Scholar 

  • Sherry, D. M. and Yazulla, S. (1993) Goldfish bipolar cells and axon terminal patterns: A Golgi study. Journal of Comparative Neurology 329, 188–200.

    PubMed  CAS  Google Scholar 

  • Shiells, R. A. (1995) Photoreceptor-bipolar cell transmission. In Neurobiology and Clinical Aspects of the Outer Retina (Djamgoz, M. B. A., Archer, S. N. and Vallerga, S. Eds.). Chapman and Hall, London. pp. 297— 324.

    Google Scholar 

  • Sjöstrand, F. S. (1953) Ultrastructure of retinal rod synapses of the guinea pig eye, as revealed by three dimensional reconstruction of serial sections. Journal of Ultrastructure Research 5, 13 —17.

    Google Scholar 

  • Slaughter, M. M. and Miller, R. F. (1981) 2-amino-4-phosphonobutyric acid: a new pharmacological tool for retina research. Science 211, 182 —184.

    Google Scholar 

  • Smith, R. G. and Sterling, P. (1990) Cone receptive field in cat retina computed from microcircuitry. Visual Neuroscience 5, 453–461.

    PubMed  CAS  Google Scholar 

  • Smith, R. G., Freed, M. A. and Sterling, P. (1986) Microcircuitry of the dark adapted cat retina: functional architecture of the rod-cone network. Journal of Neuroscience 6, 3505–3517.

    PubMed  CAS  Google Scholar 

  • Spadaro, A, de simone, I. and Puzzolo, D. (1978) Ultrastructural data and chronobiological patterns of the synaptic ribbons in the outer plexiform layer of albino rats. Acta anantomica 102, 365–373.

    CAS  Google Scholar 

  • Stell, W. K. (1967) The structure and relationships of horizontal cells and photoreceptor-bipolar synaptic complexes in goldfish retina. American Journal of Anatomy 120, 401— 423.

    Google Scholar 

  • Stell, W. K. (1975) Horizontal cell axons and axon terminal in goldfish retina. Journal of Comparative Neurology 159, 503–520.

    PubMed  CAS  Google Scholar 

  • Stell, W. K. (1976) Functional polarization of horizontal cells dendrites in goldfish retina. Investigative Ophthalmology and Visual Science 15, 895–908.

    Google Scholar 

  • Stell, W. K. (1980) Photoreceptor-specific synaptic pathways in goldfish retina: a world of colour, a wealth of connections. In Colour Vision Deficiencies V ( Verriest, G. Ed.). A. Hilger, Bristol. pp. 1–14.

    Google Scholar 

  • Stell, W. K. and Lightfoot, D. O. (1975) Color-specific interconnections of cones and horizontal cells in the retina of the goldfish. Journal of Comparative Neurology 159, 473–502.

    PubMed  CAS  Google Scholar 

  • Stell, W. K. and Lightfoot, D. O. (1979) Computer-aided reconstruction and analysis of goldfish rod synapses. Seitai no Kagaku 30, 173 —177.

    Google Scholar 

  • Stell, W. K., Ishida, A. T. and Lightfoot, D. O. (1977) Goldfish retina: structural basis for ON- and OFF-centre responses in retinal bipolar cells. Science 198, 1269 —1271.

    Google Scholar 

  • Stell, W. K., Kretz, R. and Lightfoot, D. O. (1982) Horizontal cell connectivity in goldfish. In The S-Potential ( Drujan, B. D. and Laufer, M. Eds.). Liss, A. R. New York. pp. 51–75.

    Google Scholar 

  • Stell, W. K., Lightfoot, D. O., Wheeler, T. G. and Leeper, H. F. (1975) Goldfish retina: functional polarization of cone horizontal cell dendrites and synapses. Science 190, 989–890.

    PubMed  CAS  Google Scholar 

  • Stell, W. K., Barton, L., Ohtsuka, T. and Hirano, J. (1994) Chromatic and neurochemical correlates of synapses between cones and horizontal cells. In Great Basin Visual Science Symposium (Olson, R. J., and Lasater, E. M. Eds.). University of Utah, Salt Lake City. pp. 41— 48.

    Google Scholar 

  • Sterling, P. (1983) Microcircuitry of the cat retina. Annual Reviews of Neuroscience 6, 149 —185.

    Google Scholar 

  • Sterling, P., Cohen, E., Freed, M. A. and Smith, R. G. (1987) Microcircuitry of the on-beta ganglion cell in daylight, twilight and starlight. Neuroscience Research Supplement 6, S269–285.

    PubMed  CAS  Google Scholar 

  • Tachibana, M. and Kaneko, A. (1984) y-aminobutyric acid acts at axon terminals of turtle photoreceptors: difference in sensitivity among cell types. Proceedings of the National Academy of Science (U.S.A.) 81, 7961–7964.

    Google Scholar 

  • Teranishi, T., Kato, S. and Negishi, K. (1982) Lateral spread of S-potential components in the carp retina. Experimental Eye Research 34, 389–399.

    PubMed  CAS  Google Scholar 

  • Torngvist, K., Yang, X.-L. and Dowling, J. E. (1988) Modulation of the cone horizontal cell activity in the teleost fish retina. III. Effects of prolonged darkness and dopamine on electrical coupling between horizontal cells. Journal of Neuroscience 8, 2279–2288.

    Google Scholar 

  • Trifonov, Y. A. (1968) Study of synaptic transmission between photoreceptors and horizontal cells by means of electrical stimulation in the retina. Biofizika 13, 809–817.

    PubMed  CAS  Google Scholar 

  • Tsukamoto, Y., Masarachia, E, Schein, S. J. and Sterling, P. (1992) Gap junctions between the pedicles of macaque foveal cones. Vision Research 32, 1809 —1815.

    Google Scholar 

  • Vaney, D. I. (1990) The mosaic of amacrine cells in the mammalian retina. Progress in Retinal Research 9, 49 —100.

    Google Scholar 

  • Vaney, D. I. (1991) Many diverse types of retinal neurons show tracer coupling when injected with biocytin or neurobiotin. Neuroscience Letters 125, 187–190.

    PubMed  CAS  Google Scholar 

  • Vaney, D. 1. (1993) The coupling pattern of axon-bearing horizontal cells in the mammalian retina. Proceedings of the Royal Society of London B 252, 93 —101.

    Google Scholar 

  • Vaney, D. I. (1994) Patterns of neuronal coupling in the retina. Progress of Retinal Research 13, 301— 355.

    Google Scholar 

  • Vardi, N., Masarachia, P. and Sterling, R. (1992) Immunoreactivity to GABAA receptor in the outer plexiform layer of the cat retina. Journal of Comparative Neurology 320, 394–397.

    PubMed  CAS  Google Scholar 

  • Vardi, N., Kaufman, D. I. and Sterling, P. (1994) Horizontal cells in cat and monkey retina express different isoforms of glutamic acid decarboxylase. Visual Neuroscience 11, 135 —142.

    Google Scholar 

  • Villa de la, R, Kurahashi, T. and Kaneto, A. (1995) L-Glutamate-induced responses and cGMP-activated channels in three subtypes of retinal bipolar cells dissociated from the cat. Journal of Neuroscience 15, 3571— 3582.

    Google Scholar 

  • Voigt, T. and Wässle, H. (1987) Dopaminergic innervation of All amacrine cells in mammalian retina. Journal of Neuroscience 7, 4115–4128.

    PubMed  CAS  Google Scholar 

  • Vollrath, L., Meyer, A. and Buschmann, F. (1989) Ribbon synapses of the mammalian retina contain two types of synaptic bodies-ribbons and spheres. Journal of Neurocytology 18, 115 —120.

    Google Scholar 

  • Vollrath, L. and Spiwoks-Becker, I. (1996) Plasticity of retinal ribbon synapses. Microscopy Research and Technique 35, 472–487.

    PubMed  CAS  Google Scholar 

  • Wagner, H.-.J. (1972) Vergleichende Untersuchungen über das Muster der Sehzellen and Horizontalen in der Teleostier-Retina (Pisces). Zeitschrift für Morphologie der Tiere 72, 77–130.

    Google Scholar 

  • Wagner, H.-J. (1973) Darkness-induced reduction in the number of synaptic ribbons in fish retina. Nature New Biology 246, 53–55.

    PubMed  CAS  Google Scholar 

  • Wagner, H.-J. (1978) Cell types and connectivity patterns in mosaic retinae. Advances in Anatomy and Embryology 55, 1— 81.

    Google Scholar 

  • Wagner, H.-J. (1980) Light-dependent plasticity of the morphology of horizontal cell terminals in cone pedicles of fish retina. Journal of Neurocytology 9, 573–590.

    PubMed  CAS  Google Scholar 

  • Wagner, H.-J. (1990) Retinal structure in fishes. In The Visual System of Fish (Douglas, R. H. and Djamgoz, M. B. A. Eds.). Chapman and Hall, London. pp. 109 —158.

    Google Scholar 

  • Wagner, H.-.J. (1997) Presynaptic bodies (ribbons’): from ultrastructural observations to molecular perspectives. Cell and Tissue Research 287, 435–446.

    PubMed  CAS  Google Scholar 

  • Wagner, H.-J. and Ali, M. A. (1978) Retinal organization in goldeye and mooneye. Revue Canadienne de Biologie 37, 65–84.

    PubMed  CAS  Google Scholar 

  • Wagner, H.-J. and Wulle, I. (1990) Dopaminergic interplexiform cells contact photoreceptor terminals in catfish retina. Cell and Tissue Research 261, 359–365.

    Google Scholar 

  • Wagner, H.-J. and Wulle, I. (1992) Contacts of dopaminergic interplexiform cells in the outer retina of the blue acara. Visual Neuroscience 9, 325–333.

    PubMed  CAS  Google Scholar 

  • Wagner, H.-J. and Djamgoz, M. B. A. (1993) Spinules: a case for retinal synaptic plasticity. Trends in Neurosciences 16, 201— 206.

    Google Scholar 

  • Wagner, H.-J., Behrens, U. D., Zaunreiter, M. and Douglas, R. H. (1992) The circadian component of spinule dynamics in teleost retinal horizontal cells is dependent on the dopaminergic system. Visual Neuroscience 9, 345–351.

    PubMed  CAS  Google Scholar 

  • Wässle, H. and Riemann, H. J. (1978) The mosaic of nerve cells in the mammalian retina. Proceedings of the Royal Society of London B 200, 441— 461.

    Google Scholar 

  • Wässle, H. and Boycott, B. B. (1991) Functional architecture of the mammalian retina. Physiological Reviews 71, 447— 480.

    Google Scholar 

  • Wässle, H., Grünert, U., Martin, P. R. and Boycott, B. B. (1994) Immunocytochemical characterisation and spatial distribution of midget bipolar cells in the macaque monkey retina. Vision Research 34, 561— 579.

    Google Scholar 

  • Wässle, H., Yamashita, M., Greferath, U., Grünert, U. and Müller, F. (1991) The rod bipolar cell of the mammalian retina. Visual Neuroscience 7, 99 —112.

    Google Scholar 

  • Weiler, R. and Zettler, F. (1979) The axon bearing horizontal cells in the teleost retina are functional as well as structural units. Vision Research 19, 1261–1268.

    PubMed  CAS  Google Scholar 

  • Weiler, R. and Wagner, H.-J. (1984) Light dependent change in cone-horizontal cell interactions in carp retina. Brain Research 298, 1— 9.

    Google Scholar 

  • Weiler, R. and Schultz, K. (1993) lonotropic non-N-methyl-D-aspartate agonists induce retraction of dendritic spinules from retinal horizontal cells. Proceedings of the National Academy of Science (U.S.A.) 90, 6533–6537.

    Google Scholar 

  • Weiler, R., Baldridge, W. H., Mangel, S. C. and Dowling, J. E. (1997) Modulation of endogenous dopamine release in the fish retina by light and prolonged darkness. Visual Neuroscience 14, 351— 356.

    Google Scholar 

  • Wenthold, R. J., Yokotani, N., Doe, K. and Wada, K. (1992) Immunochemical characterization of the nonNMDA glutamate receptor using subunit-specific antibodies. Evidence for a heterooligomeric structure in rat brain. Journal of Biological Chemistry 267, 501— 507.

    Google Scholar 

  • Werblin, F. S. (1979) Integrative pathways in local circuits between slow-potential cells in the retina. In The Neurosciences, Fourth Study Program ( Schmitt, F. O. and Worden, F. G. Eds.). The MIT Press, Cambridge MA. PP. 193–211.

    Google Scholar 

  • Werblin, E. S. and Dowling, J. E. (1969) Organization of the retina of the mudpuppy, Necturus maculosus: II Intracellular recording. Journal of Neurophysiology, 40, 23–62.

    Google Scholar 

  • Wikler, K. C. and Rakic, P. (1990) Distribution of photoreceptor subtypes in the retina of diurnal and nocturnal primates. Journal of Neuroscience 10, 3390–4401.

    PubMed  CAS  Google Scholar 

  • Williams, D. R. (1986) Seeing through the photoreceptor mosaic. Trends in Neurosciences 9, 193 —198.

    Google Scholar 

  • Winslow, R. L., Miller, R. F. and Ogden, T. E. (1989) Functional role of spines of the retinal horizontal cell network. Proceedings of the National Academy of Science (U.S.A.) 86, 387— 391.

    Google Scholar 

  • Witkovsky, P. and Dowling, J. E. (1969) Synaptic relationships in the plexiform layers of the carp retina.

    Google Scholar 

  • Zeitschrift far Zellforschung und Mikroskopische Anatomie 100, 60–82.

    Google Scholar 

  • Witkovsky, P. and Stell, W. K. (1973) Retinal structure in the smooth dogfish Mustelus canis: electron microscopy of serially sectioned bipolar cell synaptic terminals. Journal of Comparative Neurology 150, 147–168.

    PubMed  CAS  Google Scholar 

  • Witkovsky, P., Stone, S. and Tranchina, D. (1989) Photoreceptor to horizontal cell synaptic transfer in the Xenopus retina: modulation by dopamine ligands and a circuit model for interaction of rod and cone inputs. Journal of Neumphysiology 62, 864–881.

    CAS  Google Scholar 

  • Witkovsky, P. and Dearry, A. (1991) Functional roles of dopamine in the vertebrate retina. Progress in Retinal Research 11, 247— 292.

    Google Scholar 

  • Witkovsky, P., Shakib, M. and Ripps, H. (1974) Interreceptoral junctions in the teleost retina. Investigative Ophthalmology and Visual Science 13, 996 —1009.

    Google Scholar 

  • Wong-Riley, M. T. T. (1974) Synaptic organization of the inner plexiform layer in the retina of the tiger salamander. Journal of Neurocytology 3, 1— 33.

    Google Scholar 

  • Wu, S. M. and Yang, X.-L. (1988) Electrical coupling between rods and cones in the tiger salamander retina. Proceedings of the National Academy of Science (U.S.A.) 85, 275–278.

    CAS  Google Scholar 

  • Wulle, I. and Wagner, H.-J. (1990) GABA and tyrosine hydroxylase immunocytochemistry reveal different patterns of colocalization in retinal neurons of various vertebrates. Journal of Comparative Neurology 196, 173 —178.

    Google Scholar 

  • Yamada, M. and Saito, T. (1997) Dual component in receptive field centre of bipolar cells in carp retina. Vision Research 37, 2331— 2338.

    Google Scholar 

  • Yamada, E. and Ishikawa, T. (1965) The fine structure of the horizontal cells in some vertebrate retinas. Cold Spring Harbour Symposia on Quantitative Biology 30, 383–392.

    CAS  Google Scholar 

  • Yang, X-L., Fan, T.-X. and Shen, W. (1994) Effects of prolonged darkness on light responsiveness and spectral sensitivity of cone horizontal cells in carp retina in vivo. Journal of Neuroscience 14, 326–334.

    PubMed  CAS  Google Scholar 

  • Yang, X-L. and Wu, S. M. (1996) Response sensitivity and voltage gain of the rods-and cone-horizontal cell synapses in dark-and light-adapted tiger salamander retina. Journal of Neurophysiology 76, 3863–3874.

    PubMed  CAS  Google Scholar 

  • Yazulla, S. (1976) Cone input to bipolar cells in the turtle retina. Vision Research 16, 737–744.

    PubMed  CAS  Google Scholar 

  • Yazulla, S. (1985) Factors controlling the release of GABA from goldfish retinal horizontal cells. Neuroscience Research Suppl. 2, S147–165.

    CAS  Google Scholar 

  • Yazulla, S. (1995) Neurotransmitter release from horizontal cells. In Neurobiology and Clinical Aspects of the Outer Retina ( Djamgoz, M. B. A., Archer, S. N. and Vallerga, S. Eds.). Chapman and Hall, London. pp. 249–271.

    Google Scholar 

  • Yazulla, S., Studholme, K. M., Victoria, J. and de Blas, A. L. (1989) Immunocytochemical localization of GABAA receptors in goldfish and chicken retinas. Journal of Comparative Neurology 280, 15–26.

    PubMed  CAS  Google Scholar 

  • Yazulla, S. and Zucker, C. L. (1988) Synaptic organization of dopaminergic interplexiform cells in the goldfish retina. Visual Neuroscience I, 13–29.

    Google Scholar 

  • Yellott, J. I. Jr. (1982) Spectral analysis of spatial sampling by photoreceptors: topological disorders prevent aliasing. Vision Research 22, 1205 —1210.

    Google Scholar 

  • Yellott, J. I. Jr., Wandell, B. A. and Cornsweet, T. N. (1984) In Handbook of Physiology, Section I. American Physiological Society, Bethesdy, Md, pp. 257— 316.

    Google Scholar 

  • Zucker, C. L. and Dowling, J. E. (1987) Centrifugal fibres synapse on dopaminergic interplexiform cells in the teleost retina. Nature, 330, 166 —168.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Djamgoz, M.B.A., Vallerga, S., Wagner, HJ. (1999). Functional organization of the outer retina in aquatic and terrestrial vertebrates: comparative aspects and possible significance to the ecology of vision. In: Archer, S.N., Djamgoz, M.B.A., Loew, E.R., Partridge, J.C., Vallerga, S. (eds) Adaptive Mechanisms in the Ecology of Vision. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0619-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0619-3_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5124-0

  • Online ISBN: 978-94-017-0619-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics