Skip to main content

Part of the book series: Understanding Chemical Reactivity ((UCRE,volume 23))

Abstract

The recent availability of intense femtosecond pulses at wavelengths near 3 μm has enabled a new form of time-resolved spectroscopy that allows for a real-time measurement of the ultrafast dynamics of individual water molecules. In this chapter, an overview is given of the new information that has been obtained with this technique on the vibrational energy transfer, the molecular reorientation, the hydrogen-bond dynamics, and the solvation dynamics of liquid water.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Graener H., Seifert G., and Laubereau A. (1991) Phys. Rev. Lett. 66, 2092.

    Article  CAS  Google Scholar 

  2. Woutersen S., Emmerichs U., and Bakker H. J. (1997) Science 278, 658.

    Article  CAS  Google Scholar 

  3. Laenen R., Rauscher C., and Laubereau A. (1998) Phys. Rev. Lett. 80, 2622.

    Article  CAS  Google Scholar 

  4. Woutersen S., Emmerichs U., Nienhuys H. K., and Bakker H. J. (1998) Phys. Rev. Lett. 81, 1106.

    Article  CAS  Google Scholar 

  5. Gale G. M., Gallot G., Hache G., Lascoux N., Bratos S., and Leicknam J C. (1999) Phys. Rev. Lett. 82, 1086.

    Google Scholar 

  6. Woutersen S. and Bakker H. J. (1999) Phys. Rev. Lett. 83, 2077.

    Article  CAS  Google Scholar 

  7. Woutersen S. and Bakker H. J. (1999) Nature 402, 507.

    Article  CAS  Google Scholar 

  8. Bratos S., Gale G. M., Gallot G., Hache F., Lascoux N., and Leicknam J. C. (2000) Phys. Rev. E 61, 5211.

    Article  CAS  Google Scholar 

  9. Deak J., Rhea S., Iwaki L., and Dlott D. (2000) J. Phys. Chem. A104, 4866.

    Article  Google Scholar 

  10. Laenen R., Roth T., and Laubereau A. (2000) it Phys. Rev. Lett. 85, 50.

    Article  CAS  Google Scholar 

  11. Kropman M. and Bakker H. J. (2001) Science 291, 2118.

    Article  CAS  Google Scholar 

  12. Laenen R., Simeonidis K., and Lauebereau A. (2002) J. Phys. Chem. B 106, 408.

    Article  CAS  Google Scholar 

  13. Emmerichs U., Woutersen S., and Bakker H. J. (1997)(1997) J. Opt. Soc. Am. B 14, 1480.

    Google Scholar 

  14. Nienhuys H. K., Woutersen S., van Santen R. A., and Bakker H. J. (1999) J. Chem. Phys. 11, 1494.

    Article  Google Scholar 

  15. Stenger, J., Madsen D., Hamm P., Nibbering E. T. J., and Elsaesser T. (2001) Phys. Rev. Lett. 87, 027401.

    Article  Google Scholar 

  16. Hamm P., and Hochstrasser R. (2001) Ultrafast Infrared and Raman Spectroscopy, Chapter 7, p. 284, edited by Fayer M. D., Marcel Dekker Inc., New York.

    Google Scholar 

  17. Nitzan A. and Jortner(1973) J. Mol. Phys. 25, 713.

    Article  CAS  Google Scholar 

  18. Laenen R. and Thaller A. (2001) Chem. Phys. Lett. 349, 442.

    Article  CAS  Google Scholar 

  19. Staib A. and Hynes J. T. (1993) Chem. Phys. Lett. 204, 197.

    Article  CAS  Google Scholar 

  20. Miller R. E. (1988) Science 240, 447.

    Article  CAS  Google Scholar 

  21. Kropman M. F., Nienhuys H. K., Woutersen S., and Bakker H. J. (2001) J. Phys. Chem. A105, 4622.

    Article  Google Scholar 

  22. Lock A. and Bakker H. J. (2002) J. Chem. Phys. 117, 1708.

    Article  CAS  Google Scholar 

  23. Bailey C. G., Kim J., Dessent C. E. H., and Johnson M. A. (1997) Chem. Phys. Lett. 269, 122.

    Article  CAS  Google Scholar 

  24. Choi J. H., Kuwata K. T., Cao K. T., and Okumura M. (1998) J. Phys. Chem. A102, 503.

    Article  Google Scholar 

  25. Cabarcos O. M., Weinheimer C. J., Lisy J. M., and Xantheas S. S. (1999) J. Chem. Phys. 110, 5.

    Article  CAS  Google Scholar 

  26. Ayotte P., Bailey C. G., Weddle G. H., and Johnson M. A. (1998) J. Phys. Chem. A102, 3067.

    Article  Google Scholar 

  27. Walraven G. E. (1962) J. Chem. Phys. 36, 1035.

    Article  Google Scholar 

  28. Walraven G. E. (1962) J. Chem. Phys. 40, 3249.

    Article  Google Scholar 

  29. Walraven G. E. (1970) J. Chem. Phys. 52, 4176.

    Article  Google Scholar 

  30. Hertz H. G. (1986) in The Chemical Physics of Solvation, Part B Spectroscopy of Solvation, Chap. 7, edited by Dogonadze R. R., Kálmán E., Kornyschev A. A., and Ulstrup J., Elsevier, Amsterdam.

    Google Scholar 

  31. Hashimoto K. and Morokuma K. (1994) Chem. Phys. Lett. 223, 423.

    Article  CAS  Google Scholar 

  32. Asada T. and Nishimoto K. (1995) Chem. Phys. Lett. 232, 518.

    Article  CAS  Google Scholar 

  33. Ramaniah L. M., Bernasconi M., and Parrinello M. (1998) J. Chem. Phys. 109, 6839.

    Article  CAS  Google Scholar 

  34. Peslherbe, G., Ladanyi B. M., and Hynes J. T. (2000) J. Phys. Chem. A104, 4533.

    Article  Google Scholar 

  35. Chandra A. (2000) —it Phys. Rev. Lett. 85, 768.

    Article  CAS  Google Scholar 

  36. Jimenez R., Fleming G. R., Kumar P. V., and Maroncelli M. (1994) Nature 369, 471.

    Article  CAS  Google Scholar 

  37. Novak A. (1974) Struct. Bonding (Berlin) 18, 177.

    Article  CAS  Google Scholar 

  38. Mikenda W. (1986) J. Mol. Struct. 147, 1.

    Article  CAS  Google Scholar 

  39. Graener H., Seifert G., and Laubereau A. (1990) Chem. Phys. Lett. 172, 435.

    Article  CAS  Google Scholar 

  40. Förster T. (1965) in Modern Quantum Chemistry edited by Sinanoglu, O., Vol. III, 93–137, Academic Press, New York.

    Google Scholar 

  41. Eisenthal K. B. (1970) Chem. Phys. Lett. 6, 155.

    Article  CAS  Google Scholar 

  42. Franks F. (1972) Water, A Comprehensive Treatise, Plenum, New York.

    Google Scholar 

  43. Nienhuys H. K., van Santen R. A., and Bakker H. J. (2000) J. Chem. Phys. 112, 8487.

    Article  CAS  Google Scholar 

  44. Szabo A. (1984) J. Chem. Phys. 81, 150.

    Article  CAS  Google Scholar 

  45. de Grotthuss C. J. T. (1806) Ann. Chim. LVIII, 54.

    Google Scholar 

  46. Tuckerman M., Laasonen K., Sprik M., and Parrinello M. (1995) it J. Chem. Phys. 103, 150.

    Article  CAS  Google Scholar 

  47. Tuckerman M., Laasonen K., Sprik M., and Parrinello M. (1995) J. Phys. Chem. 99, 5749.

    Article  CAS  Google Scholar 

  48. Marx D., Tuckerman M. E., Hutter J., and Parrinello M. (1999) Nature 397, 601.

    Article  CAS  Google Scholar 

  49. Sciortino F., Poole P. H., Stanley H. E., and Havlin S. (1990) Phys. Rev. Lett. 64, 1686.

    Article  CAS  Google Scholar 

  50. Luzar A. and Chandler D. (1996) Phys. Rev. Lett. 76, 928.

    Article  CAS  Google Scholar 

  51. Diraison M., Guissani Y., Leicknam J. C., and Bratos S. (1996) Chem. Phys. Lett. 258, 348.

    Article  CAS  Google Scholar 

  52. Conde O. and Teixeira J. (1984) Mol. Phys. 53, 954.

    Article  Google Scholar 

  53. Teixeira J., Belissent-Funel M. C., Chen M. C., and Dianoux A. J. (1985) Phys. Rev. A 31, 1913.

    Article  CAS  Google Scholar 

  54. Bratos S. and Leicknam J. Cl. (1994) J. Chem. Phys. 101, 4536.

    Article  CAS  Google Scholar 

  55. Bratos S. and Leicknam J. Cl. (1995) J. Chem. Phys. 103, 4887.

    Article  CAS  Google Scholar 

  56. Burshtein A. I., Chernobrod B. M., and Sivachenko A. Y. (1999) J. Chem. Phys. 110, 1931.

    Article  CAS  Google Scholar 

  57. Mukamel S. (1995) Principles of Nonlinear Optical Spectroscopy, Oxford University Press, New York.

    Google Scholar 

  58. Bergström P. Å;. and Lindgren J.(1991) J. Phys. Chem. 95, 8575.

    Article  Google Scholar 

  59. Wójcik M. J., Lindgren J., and Tegenfeldt J. (1983) Chem. Phys. Lett. 99, 112.

    Article  Google Scholar 

  60. Laenen R. and Rauscher C. (1998) Chem Phys. Lett. 230, 223.

    CAS  Google Scholar 

  61. Bakker H. J., Nienhuys H. K., Gallot G., Lascoux N., Gale G. M., Leicknam J. C., and Bratos S. (2002) J. Chem. Phys. 116, 2592.

    Article  CAS  Google Scholar 

  62. Lippincott E. R. and Schroeder R. (1955) J. Chem. Phys. 23, 1099.

    Article  CAS  Google Scholar 

  63. Bakker H. J. and Nienhuys H. K. (2002) Science 297, 587.

    Article  CAS  Google Scholar 

  64. Libnau F. O., Kvalheim O. M., Christy A. A., and Toft (1994) J. Vib. Spectrosc. 7, 243.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Bakker, H.J. (2002). Femtosecond Mid-Infrared Spectroscopy of Water. In: Elsaesser, T., Bakker, H.J. (eds) Ultrafast Hydrogen Bonding Dynamics and Proton Transfer Prosesses in the Condensed Phase. Understanding Chemical Reactivity, vol 23. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-0059-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-017-0059-7_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-6206-2

  • Online ISBN: 978-94-017-0059-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics