Skip to main content

Conservation Laws for Microcrack Damage in Piezoelectric Materials

  • Chapter
Advances in Conservation Laws and Energy Release Rates
  • 129 Accesses

Abstract

This chapter focuses on characterizing damaged anisotropic piezoelectric materials by using the principles of fracture mechanics, i.e., the conservation laws and energy release rates. The interpretation and evaluation of the two components of the J k vector along contours enclosing strongly interacting microcracks in two-dimensional piezoelectric materials are presented. The conservation laws of the J k vector established by Budiansky and Rice (1973) in single crack problems for traditional non-piezoelectric materials and extended in the above chapters to interacting multiple cracks [Chen and Hasebe (1998) and Chen (2001a, b)] are re-examined for anisotropic piezoelectric materials containing interacting multiple cracks. The interaction problem for arrays of arbitrarily orientated and distributed microcracks subjected to combined mechanical and electrical loading is studied in detail. The contribution of the second component of the J k vector, evaluated in the local coordinate system which is attached to each microcrack, to the J k vector evaluated in the global coordinate system is calculated. It is found that the conservation laws of the J k vector are still valid in damaged piezoelectric materials, although in the present problem the elastic and electric fields are coupled which add complications to the original formulations by Budiansky and Rice (1973).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References for Chapter 7

  • Budiansky, B. and Rice, J. R. (1973) Conservation laws and energy-release rates. ASME Journal of Applied Mechanics, 40, 201 – 203.

    Article  ADS  MATH  Google Scholar 

  • Chen, Y.H., (2001a) M-integral analysis for two-dimensional solids with strongly interacting microcracks, Part I. In an infinite brittle solid, International Journal of Solids and Structures, 38, 3193 – 3212.

    Article  MATH  Google Scholar 

  • Chen, Y.H., (2001b) M-integral analysis for two-dimensional solids with strongly interacting microcracks, Part II. In the brittle phase of an infinite metal/ceramic bimaterial, International Journal of Solids and Structures, 38, 3213 – 3232.

    Article  Google Scholar 

  • Chen, Y. H. and Hasebe, N. (1998) A consistency check for strongly interacting multiple crack problem in isotropic, anisotropic, and bimaterial solids, International Journal of Fracture, 89, 333 – 353.

    Article  Google Scholar 

  • Chen, Y H. and Ma, H. (1997) Explicit formulation of the J 2-integral in anisotropic materials and its application in microcrack shielding problem, Science in China, (E), 40, 588 – 596.

    Article  MathSciNet  Google Scholar 

  • Chen, YH. and Lu, T.J. (2001) Conservation laws of the J k -vector for microcrack damage in piezoelectric materials, International Journal of Solids and Structures, 38, 3233 – 3245.

    Article  MATH  Google Scholar 

  • Chung, M. Y. and Ting, T. C. T. (1996) Piezoelectric sold with an elliptic inclusion or hole, International Journal of Solids and Structures, 33, 3343 – 3361.

    Article  MathSciNet  MATH  Google Scholar 

  • Dunn, M. (1994) The effects of crack face boundary conditions on the fracture mechanics of piezoelectric solids, Engineering Fracture Mechanics, 48, 25–39.

    Article  ADS  Google Scholar 

  • Han, J. J. and Chen, Y. H. (1999) Multiple parallel cracks interaction problem in piezoelectric ceramics, International Journal of Solids and Structures, 36, 3375 – 3390.

    Article  MATH  Google Scholar 

  • Hao, T-H. and Shen, Z-Y (1994) A new electric boundary condition of electric fracture mechanics and its application, Engineering Fracture Mechanics, 47, 793 – 802.

    Article  Google Scholar 

  • Herrmann, A. G. and Herrmann, G. (1981) On energy-release rates for a plane crack. ASME Journal of Applied Mechanics, 48, 525 – 528.

    Article  ADS  MATH  Google Scholar 

  • Heyer, V., Schneider, G.A., Balke, H., Drescher, J., and Bahr, H. A., (1998) A fracture criterion for conducting cracks in homogeneously poled piezoelectric PZT-PIC151 ceramics, Acta Mater, 46, 6615 – 6622.

    Article  Google Scholar 

  • Horii, H. and Nemat Nasser, S. (1985) Elastic field of interacting inhomogeneities, International Joural of Solids and Structures, 21, 731 – 745.

    Article  MATH  Google Scholar 

  • Horii, M. and Nemat Nasser, S. (1987) Interacting microcracks near the tip in the process zone of a macrocrack, Journal of the Mechanics and Physics of Solids, 35, 601–629.

    Article  MathSciNet  ADS  Google Scholar 

  • Pak, Y E. (1990) Crack extension force in a piezoelectric material, ASME Journal of Applied Mechanics, 57, 647 – 653.

    Article  ADS  MATH  Google Scholar 

  • Pak, Y.E. (1992) Linear electro-elastic fracture mechanics of piezoelectric materials, International Journal of Fracture, 54, 79 – 100.

    Article  Google Scholar 

  • Pak, Y.E. and Tobin, A. (1993) On electric field effects in fracture of piezoelectric materials, ASME Mechanics of Electromagnetic Materials and Structures eds, Lee, J.S., Maugin G.A., and Shino Y, AMD-Vol. 161, MD-Vol. 42, 51 – 62.

    Google Scholar 

  • Park, S. B. and Sun, C. T. (1995a) Fracture criteria for piezoelectric ceramics, Journal of the American Ceramic Society, 78, 1475 – 1480.

    Article  Google Scholar 

  • Park, S. B. and Sun, C. T. (1995b) Effect of electric fields on fracture of piezoelectric ceramics, International Journal of Fracture, 70, 203 – 216.

    Article  Google Scholar 

  • Park, S.B, Park, S.S, Carman, G.P, and Hahn, H. T, (1998) Measuring strain distribution during mesoscopic domain reorientation in ferrorelectric materials. ASME Journal of Engineering Materials and Technology, 120, 1 – 6.

    Article  Google Scholar 

  • Rice, J. R. (1968) A path independent integral and the approximate analysis of strain concentration by notches and cracks, ASME Journal of Applied Mechanics, 35, 379 – 386.

    Article  ADS  Google Scholar 

  • Shindo, Y, and Tanaka, K., and Narita, F. (1997) Singular stress and electric fields of a piezoelectric ceramic strip under longitudinal shear, Acta Mechanica, 120, 31 – 45.

    Article  MATH  Google Scholar 

  • Sosa, H. (1991) Plane problems in piezoelectric media with defects, International Journal of Solids and Structures, 28, 491 – 505.

    Article  MATH  Google Scholar 

  • Sosa, H. (1992) On the fracture mechanics of piezoelectric solids, International Journal of Solids and Structures, 29, 2613 – 2622.

    Article  MATH  Google Scholar 

  • Sosa, H. and Khutoryansky, N. (1996) New development concerning piezoelectric materials with defects, International Journal of Solids and Structures, 33, 3399 – 3414.

    Article  MathSciNet  MATH  Google Scholar 

  • Suo, Z., Kuo, C. M., Barnett, D. M. and Willis, J. R. (1992) Fracture mechanics for piezoelectric ceramics, Journal of the Mechanics and Physics of Solids, 40, 739 – 765.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Xu, X-L. and Rajapakse, R.K.N.D. (1999) Analytical solution for an arbitrarily oriented void/crack and fracture of piezoceramics, Acta Mater, 47, 1735 – 1747.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Chen, YH. (2002). Conservation Laws for Microcrack Damage in Piezoelectric Materials. In: Advances in Conservation Laws and Energy Release Rates. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9908-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9908-5_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5970-3

  • Online ISBN: 978-94-015-9908-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics