Skip to main content
  • 209 Accesses

Abstract

The electrophoretic motion of a charged particle is determined under the “thin” double-layer assumption by solving seven well-posed boundary integral equations. Special attention is paid to the case of ellipsoidal particles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Anderson, J. L. (1989). Colloid transport by interfacial forces Ann. Rev. Fluid Mech., 21: 61–99.

    Article  Google Scholar 

  • Beskos, D. E. (1987). Introduction to Boundary Element Methods. In D. E. Beskos, editor, Computational Methods in Mechanics, pages 23–106. Elsevier Science Publishers.

    Google Scholar 

  • Bonnet, M. (1999). Boundary Integral Equation Methods for Solids and Fluids. John Wiley & Sons Ltd.

    Google Scholar 

  • Brebbia, C. A., Telles, J. C. L. and Wrobel, L. C. (1984). Boundary Element Techniques. Springer-Verlag, Theory and Applications in Engineering, Berlin Heidelberg New York Tokyo.

    Book  MATH  Google Scholar 

  • Edwardes, B. A. (1892). Steady motion of a viscous liquid in which an ellipsoid is constrained to rotate about a principal axis. Quart. J. Math., 26: 70–78.

    Google Scholar 

  • Fair, M. C. and Anderson, J. L. (1989). Electrophoresis of nonuniformly charged ellipsoidal particles. J. Colloid. Interface Sci., 127: 388–400.

    Article  Google Scholar 

  • Happel, J. and Brenner, H. (1973). Low Reynolds number hydrodyrnarnics. Martinus Nijhoff.

    Google Scholar 

  • Hiemenz, P. C. and Rajagopalan, R. (1986). Principles of Colloid and Surface Chemistry. , Marcel Dekker, New York.

    Google Scholar 

  • Hunter, R. J. (1981). Zeta Potential in Colloid Science. Academic Press, New York, 1981.

    Google Scholar 

  • Jeffery, G. B. (1922). The motion of ellipsoidal particles immersed in a viscous fluid. Proc. Roy. Soc. Lond. A., 102: 161–179.

    Article  Google Scholar 

  • Kellogg, O. D. (1967). Foundations of potential theory. Springer-Verlag, Berlin.

    Book  MATH  Google Scholar 

  • Kim, S. and Karrila, S. J. (1991). Microhydrodynamics: Principles and Selected Applications. Butterworth.

    Google Scholar 

  • Kupradze, V. D. (1963). Dynamical problems in elasticity. In Progress in solid mechanics, North-Holland, New York.

    Google Scholar 

  • Ladyzhenskaya, O. A. (1969). The Mathematical Theory of Vicous Incompressible Flow. Gordon & Breach.

    Google Scholar 

  • Lamb, H. (1932). Hydrodynamics. 6th edn, Cambridge University Press.

    MATH  Google Scholar 

  • Lyness, J N. and Jespersen, D. (1975). Moderate Degree Symmetric Quadrature Rules for the Triangle. J. Inst. Maths Applics, 15: 19–32.

    Article  MathSciNet  MATH  Google Scholar 

  • Morrison, F. A. (1970). Electrophoresis of a particle of arbitrary shape. J. Colloid. Interface Sci., 34: 210–214.

    Article  Google Scholar 

  • Oberbeck, A. (1876). Uber stationare Flussigkeitsbewegungen mit Berucksichtigung der inneren Reibung. J. Reine. Angew. Math., 81: 62–80.

    Google Scholar 

  • Perrin, F. (1934). Mouvement Brownien d’un ellipsoide (I). Dispersion Diélectrique pour des molécules ellipsoidales. J. Phys. Radium., 5: 497–519.

    Article  Google Scholar 

  • Pozrikidis, C. (1992). Boundary integral and singularity methods for linearized viscous flow. low. Cambridge University Press.

    Book  Google Scholar 

  • Rezayat, M., Shippy, D. J. and Rizzo, F. J. (1986). On time-harmonic elactic-wave alaysis by the Boundary Element Method for moderate to high frequencies. Comp. Meth. in Appl. Mech. Engng., 55: 349–367.

    Article  MATH  Google Scholar 

  • Sellier, A. (2000). A note on the Electrophoresis of a uniformly charged particle. submitted to Quart. J. Math.

    Google Scholar 

  • Smoluchowski, M. V. (1921). In Handbuch der Elektrizität und des Magnetismus. Ed. L. Graetz. Leipzig: J. A. Barth.

    Google Scholar 

  • Teubner, M. (1982). The motion of charged colloidal particles in electric fields J. Chem. Phys., 76 (11): 5564–5573.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Sellier, A. (2001). Electrophoretic Motion of a Charged Particle. In: Burczynski, T. (eds) IUTAM/IACM/IABEM Symposium on Advanced Mathematical and Computational Mechanics Aspects of the Boundary Element Method. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9793-7_28

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9793-7_28

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5737-2

  • Online ISBN: 978-94-015-9793-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics