Skip to main content

Part of the book series: Quantitative Geology and Geostatistics ((QGAG,volume 10))

Abstract

Often, an exploratory data analysis reveals that geostatistical data are not homogeneous over the region under study, and that their means, variances and/or correlation functions are different from one area to another. This paper proposes and illustrates a new methodology for the segmentation of a region into homogeneous areas, based on a criterion akin to the analysis of variance, but taking into account spatial correlations. This methodology is illustrated on simulated data and is used on a rainfall dataset from Switzerland to separate the region into homogeneous zones corresponding to low rain / high rain zones (rain fronts).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Allard, D. and Fraley, Ch. (1997) Non parametric maximum likelihood estimation of features in spatial point processes using Voronoϊ tesselation, Journal of the American Statistical Association 92,1485–1493.

    MATH  Google Scholar 

  • Ambroise, C., Dang, M. and Govaert, G. (1995) Clustering of spatial data by the EM algorithm, in A. Soares et al (eds.), geoENV I — Geostatistics for Environmental Applications. Kluwer Academic Publishers, Dordrecht, pp. 493–504.

    Google Scholar 

  • Besag, J. E. (1986) On the statistical analysis of dirty pictures, Journal of the Royal Statistical Society, Sen ? 48, 259–302.

    MathSciNet  MATH  Google Scholar 

  • Cressie, N. (1993) Statistics for Spatial Data, Wiley-Interscience, New-York.

    Google Scholar 

  • Dempster, A. P., Laird, N. M. and Rubin, D. B. (1977) Maximum likelihood from incomplete data via EM algorithm (with discussion), Journal of the Royal Statistical Society, Sen ? 39, 1–38.

    MathSciNet  MATH  Google Scholar 

  • Geman, S. and Geman, D. (1984) Stochastic relaxation, Gibbs distribution and the Bayesian restoration of images, IEEE Transactions on Pattern Analysis and Machine Intelligence 6, 721–741.

    Article  MATH  Google Scholar 

  • Haslett, J. (1985) Maximum likelihood discriminant analysis on the plane using a Marko-vian model of spatial context, Pattern Recognition 18, 287–296.

    Article  MATH  Google Scholar 

  • Oliver, M. A. and Webster, R. (1989) A Geostatistical basis for spatial weighting in multivariate classification, Mathematical Geology 21,15–35.

    Article  Google Scholar 

  • Ripley, B. D. (1996), Pattern Recognition and Neural Networks, Cambridge University Press, Cambridge.

    MATH  Google Scholar 

  • Searle, R. S., Casella, G. and McCulloch ?. ?. (1992), Variance Components, Wiley-Interscience, New-York.

    Book  MATH  Google Scholar 

  • Switzer, P., Kowalik, W. S. and Lyon, R. J. P. (1982) A prior probability method for smoothing discriminant analysis classification maps, Math. Geology 14,433–444.

    Article  Google Scholar 

  • Venables, W. N. and Ripley, B. D. (1994) Modern Applied Statistics with S-Plus, Springer-Verlag, New-York.

    Book  MATH  Google Scholar 

  • Wackernagel, H. (1995), Multivariate Geostatistics, Springer-Verlag, Berlin.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Allard, D., Monestiez, P. (1999). Geostatistical Segmentation of Rainfall Data. In: Gómez-Hernández, J., Soares, A., Froidevaux, R. (eds) geoENV II — Geostatistics for Environmental Applications. Quantitative Geology and Geostatistics, vol 10. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9297-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9297-0_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5249-0

  • Online ISBN: 978-94-015-9297-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics