Skip to main content

Bioremediation of Environments Contaminated with Organic Xenobiotics: Putting Microbial Metabolism to Work

What happens with the contaminant once it has reached the cell surface?

  • Chapter
Bioavailability of Organic Xenobiotics in the Environment

Part of the book series: NATO ASI Series ((ASEN2,volume 64))

  • 419 Accesses

Abstract

Microorganisms can metabolize many aliphatic and aromatic contaminants, either to obtain carbon and/or energy for growth, or as co-substrates, thus converting them into carbon dioxide, water, chloride and biomass. To be able to exploit these biotransformations for the remediation of contaminated environments, a number of prerequisites have to be fulfilled. The chemical has first to reach the microbial cell, then it must be transported into the cell. Toxicity should be absent or limited at the in situ concentration the cell is exposed to. This chapter reviews a number of metabolic reactions that convert the contaminant into common intermediary metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aeckersberg, F., Bak, F., and Widdel, F. (1991) Anaerobic oxidation of saturated hydrocarbons to CO2 by a new type of sulfate-reducing bacterium, Arch. Microbiol., 156, 5–14.

    Article  CAS  Google Scholar 

  2. Alexander, M. (1981) Biodegradation of chemicals of environmental concern, Science 211, 132–138.

    Article  CAS  Google Scholar 

  3. Bosma, T.N.P., Van der Meer, J.R., Schraa, G., Tros, M.E., and Zehnder, A.J.B. (1988) Reductive dechlorination of all trichlorobenzene isomers, FEMS Microbiol. Ecol. 53, 223–229.

    Article  CAS  Google Scholar 

  4. Bouwer, E.J. and Zehnder, A.J.B. (1993) Bioremediation of organic compounds–putting microbial metabolism to work. Trends Biotechnol_ 11, 360–367.

    Article  CAS  Google Scholar 

  5. Ensley, B.D. (1991) Biochemical diversity of trichloroethylene metabolism, Annu. Rev. Microbiol. 45, 283–299.

    Article  CAS  Google Scholar 

  6. Fetzner, S. and Lingens, F. (1994) Bacterial dehalogenases: biochemistry, genetics, and biotechnological applications, Microbiol. Rev. 58, 641–685.

    CAS  Google Scholar 

  7. Fuchs, G., Mohamed, M.E.S., Altenschmidt, U., Koch, J., Lack, A., Brackmann, R., Lochmeyer, C., and Oswald, B. (1994) Biochemistry of anaerobic biodegradation of aromatic compounds, in C. Ratledge (ed.), Biochemistry of Microbial Degradation, Kluwer Academic Publishers, Dordrecht, pp. 513–553.

    Chapter  Google Scholar 

  8. Groenewegen, P.E.J., Driessen, A.J.M., Konings, W.N., and de Bont, J.A.M. (1990) Energy-dependent uptake of chlorobenzoate in the coryneform bacterium NTB-1, J. Bacterial. 172, 419–423.

    CAS  Google Scholar 

  9. Harms, H. and Zehnder, A.J.B. (1994) Influence of substrate diffusion on degradation of dibenzofuran and 3- chlorodibenzofuran by attached and suspended bacteria, Appl. Environ. Microbiol. 60, 27362745.

    Google Scholar 

  10. Holliger, C. (1992). Reduktive dehalogenation by anaerobic bacteria. Thesis, Wageningen Agricultural University, The Netherlands.

    Google Scholar 

  11. Holliger, C. and Zehnder, A.J.B. (1996) Anaerobic biodegradation of hydrocarbons, Cure. Opinion Biotechnol. 7, 326–330.

    Article  CAS  Google Scholar 

  12. Holliger, C., Schraa, G., Stains, A.J.M., and Zehnder, A.J.B. (1993) A highly purified bacterium couples the reductive dehalogcnation of tctrachloroethylene to growth, Appl. Environ. Microbial. 59, 2991–2997.

    CAS  Google Scholar 

  13. Holliger, C., Schraa, G., Stupperich, E., Stams, A.J.M., and Zehnder, A.J.B. 1992. Evidence for the involvement of corronoids and factor F4v) in the reductive dechlorination of I,2-dichloroethane by Methanosarcina barkeri. J. Bacterial. 174, 4427–4434.

    CAS  Google Scholar 

  14. Isken, S. and de Bont J.A.M. (1996) Active efflux of toluene in a solvent-resistant bacterium, “Bacterial. 178, 6056–6058.

    CAS  Google Scholar 

  15. Janssen, D.B., Pries, F., and van der Ploeg, J.R. (1994) Genetics and biochemistry of dehalogenating enzymes, Annu. Rev. Microbial. 48, 163–191.

    Article  CAS  Google Scholar 

  16. Langenhoff, A.A.M., Brouwers-Ceiler, D.L., Engelberting, J.H.L., Quist, J.J., Wolkenfelt, J.G.P.N., Zehnder, A.J.B., and Schraa, G. (1997) Microbial reduction of manganese coupled to toluene oxidation, FEMS Microbiol. Ecol. 22, 119–127.

    Article  CAS  Google Scholar 

  17. Langenhoff, A.A.M., Zehnder, A.J.B., and Schraa, G. (1996) Behavior of toluene, benzene and naphthalene under anaerobic conditions in sediment columns, Biodegradation 7, 267–274.

    Article  CAS  Google Scholar 

  18. Li, Y. and Trush, M.A. (1994) Reactive oxygen-dependent DNA damage resutling from the oxidation of phenolic compounds by a copper-redox cycle mechanism, Cancer Res. (suppl.) 54, 1895s - 1898s.

    CAS  Google Scholar 

  19. Locher, H.H., Poolman, B., Cook, A.M., and Konings, W.N. (1993) Uptake of 4-toluene sulfonate by Comanzonas testosterone T-2, J.Bacteriol. 175, 1075–1080.

    CAS  Google Scholar 

  20. Michels, P.A.M., Michels, J.Y.J., Boonstra, J., and Konings, W.N. (1979) Generation of an electrochemical proton gradient in bacteria by excretion of metabolic endproducts, FEMS Microbiol. Lett. 5, 357–364

    Article  CAS  Google Scholar 

  21. Middeldorp, P.J.M., Jaspers, M., Zehnder, A.J.B., and Schraa, G. (1996) Biotransformation of cc-, y-and S-hexachlorocyclohexane to benzene and chlorobenzene under methanogenic conditions, Environ Sci. Technol. 30, 2345–2349.

    Article  Google Scholar 

  22. Mohn, W.W. and Tiedje, J.M. (1992) Microbial reductive dehalogenation, Microbiol. Rev. 56, 482507.

    Google Scholar 

  23. Paulsen, J.T., Brown, M.H., Dunstan, S.J., and Skurray, R.A. (1995) Molecular characterization of the staphylococcal multidrug resistance export protein QacC, J.Bacteriol. 177, 2827–2833.

    CAS  Google Scholar 

  24. Quensen, J.F. III, Tiedje J.M., and Boyd, S.A. (1988) Reductive dechlorination of polychlorinated biphenyls by anaerobic microorganisms from sediments, Science 242, 752–754.

    Article  CAS  Google Scholar 

  25. Rueter, P., Rabus, R., Wilkes, H., Aeckersberg, F., Rainey, F.A., Jannasch, H.W., and Widdel, F. (1994) Anaerobic oxidation of hydrocarbons in crude oil by new types of sulphate-reducing bacteria, Nature 372, 455–458.

    Article  CAS  Google Scholar 

  26. Schink, B. (1988) Principles and limits of anaerobic degradation: environmental and technological aspects, in A.J.B. Zehnder (ed.), Biology of Anaerobic Microorganisms, Wiley Interscience, New York, pp. 771–846.

    Google Scholar 

  27. Scholz-Muramatsu, H., Neumann, A., Messmer, M., Moore, E., and Dieckert, G. (1995) Isolation and characterization of Dehalospirillum multivorans gen. nov., sp. nov., a tetrachloroethene-utilizing, strictly anaerobic bacterium, Arch. Microbiol. 163, 48–56.

    Article  CAS  Google Scholar 

  28. Smith, M.R. (1994) The physiology of aromatic hydrocarbon degrading bacteria, in C. Ratledge (ed.), Biochemistry of Microbial Degradation, Kluwer Academic Publishers, Dordrecht, pp. 347–378.

    Chapter  Google Scholar 

  29. Van der Meer, J.R. (1997) Evolution of novel metabolic pathways for the degradation of chloroaromatic compounds, Antonie van Leeuwenhoek 71, 159–178.

    Article  Google Scholar 

  30. Zehnder, A.J.B. and Stumm, W. (1988) Geochemistry and biogeochemistry of anaerobic habitats, in A.J.B. Zehnder (ed.), Biology of Anaerobic Microorganisms, Wiley Interscience, New York, pp. l-38.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Zehnder, A.J.B. (1999). Bioremediation of Environments Contaminated with Organic Xenobiotics: Putting Microbial Metabolism to Work. In: Baveye, P., Block, JC., Goncharuk, V.V. (eds) Bioavailability of Organic Xenobiotics in the Environment. NATO ASI Series, vol 64. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9235-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9235-2_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5311-4

  • Online ISBN: 978-94-015-9235-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics