Skip to main content

Abiotic Transformations of Organic Xenobiotics in Soils: A Compounding Factor in the Assessment of Bioavailability

  • Chapter
Bioavailability of Organic Xenobiotics in the Environment

Part of the book series: NATO ASI Series ((ASEN2,volume 64))

Abstract

Many synthetic organic chemicals are introduced into soils where their fate is determined by a number of physical, chemical and biological factors. In this report, an overview is proposed of the important role that abiotic reactions play in the transformation of xenobiotics in soils, as well as an assessment of the consequences of these reactions on the bioavailability of the xenobiotics.

Clay minerals, metal oxides, and humic substances are a complex mixture of soil components that abiotically promotes a number of reactions relevant to the environmental impact of organic xenobiotics. Adsorption is the primary stage determining the transformation of organic substances, followed by chemical reactions of the activated forms on the surface. Hydrolytic, oxidation and polymerization reactions catalyzed by clay minerals and Mn and Fe oxides dominate the abiotic transformation of xenobiotics. The efficiency of the catalytic surface processes depends on the structure and properties of the clay mineral or metal oxide and on the nature of the xenobiotic as well as on the reaction conditions. Soil organic matter appears to be involved to a lesser extent in the direct transformation reactions of xenobiotics, but it has a major role as accumulation phase of many polar and non-polar pollutants. The bioavailability and toxicity of the bound residues depend upon the possible release of bound pollutants from humic substances. Direct and indirect photolytic transformation of pollutants on soil surfaces is also discussed. The transformed products can be sorbed to the surfaces of minerals and organic matter through a variety of chemical processes. Sorption to soil will affect their availability for microbial degradation. However, soil surfaces directly and indirectly affect microbial activity. These interactions complicate the knowledge of the rate and the extent of bioavailability. An understanding of abiotic transformations under conditions that enable both biotic and abiotic transformations to occur is essential to achieve the remediation of soils contaminated with xenobiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adams, J.M. (1987) Synthetic organic chemistry using pillared, cation-exchanged and acid-treated montmorillonite catalysts–A review, Applied Clay Science 2, 309–342.

    Article  CAS  Google Scholar 

  2. Adrian, P., Lahaniatis, E.S., Andreux, F., Mansour, M., Scheunert, I., and Korte, F. (1989) Reaction of the soil pollutant 4-chloroaniline with the humic acid monomer catechol, Chemosphere 18, 1599–1609.

    Article  CAS  Google Scholar 

  3. Allison, G., and Morita, M. (1995) Bioaccumulation and toxic effects of elevated levels of 3,3’,4,4’tetrachloroazobenzene (3,3’,4,4’-TCAB) towards aquatic organisms. III: Bioaccumulation and toxic effects of detrital 3,3’,4,4’-TCAB on the aquatic snail, indohiramakigai (Indoplanorbis exustus). Chemosphere 30, 233–242.

    Article  Google Scholar 

  4. Amstrong, D.E., and Konrad, J.G. (1974) Nonbiological degradation of pesticides, in W.D. Guenzi (ed.), Pesticides in Soil and Water, Soil Science Society of America, Madison, Wisconsin„ pp. 123–130.

    Google Scholar 

  5. Ballantine, J.A., Purnell, J.H., and Thomas, J.M. (1983) Organic reactions in a clay microenvironment, Clay Minerals 18, 347–356.

    Article  CAS  Google Scholar 

  6. Barriuso, E., and Koskinen, W.C. (1996) Incorporating nonextractable atrazine residues into soil size fractions as a function of time, Soil Science Society of America Journal 60, 150–157.

    Article  CAS  Google Scholar 

  7. Berry, D.F., and Boyd, S.A. (1985) Reaction rates of phenolic humus constituents and anilines during cross-coupling, Soil Biology and Biochemistry 17, 631–636.

    Article  CAS  Google Scholar 

  8. Bollag, J.-M., and Bollag, W.B. (1990) A model for enzymatic binding of pollutants in the soil, International Journal of Environmental Analytical Chemistry 39, 147–157.

    Article  CAS  Google Scholar 

  9. Bosetto, M., Arfaioli, P., and Fusi, P. (1993) Interactions of alachlor with homoionic montmorillonites, Soil Science 155, 105–113.

    Article  CAS  Google Scholar 

  10. Boyd, S.A., and Mortland, M.M. (1985) Dioxin radical formation and polymerization on Cu(II)smectite, Nature 316, 532–535.

    Article  CAS  Google Scholar 

  11. Boyd, S.A., and Mortland, M.M. (1986) Radical formation and polymerization of chlorophenols and chloroanisole on copper(II)-smectite, Environmental Science and Technology 20, 1056–1058.

    Article  CAS  Google Scholar 

  12. Bradley, P.M., and Chapelle, F.H. (1996) Anaerobic mineralization of vinyl chloride in Fe(III)reducing, aquifer sediments, Environmental Science and Technology 30, 2084–2086.

    Article  CAS  Google Scholar 

  13. Brown, J.-C., and Ambler, J.E. (1973) “Reductants” released by roots of Fe-deficient soybeans, Agronomy Journal 65, 311–314.

    Google Scholar 

  14. Brown, C.B., and White, J.L. (1969) Reactions of 1,2-s-triazines with soil clays, Soil Science Society of America Proceedings 33, 863–867.

    Article  CAS  Google Scholar 

  15. Brown, G., Newman, A.C.D., Rayner, J.H., and Weir, A.H. (1978) The structures and chemistry of soil clay minerals, in D.J. Greenland and M.H.B. Hayes (eds.), The Chemistry of Soil Constituents, John Wiley Sons, New York, pp. 29–178.

    Google Scholar 

  16. Calderbank, A. (1989) The occurrence and significance of bound pesticide residues in soil, Reviews of Environmental Contamination and Toxicology 108, 71–103.

    Article  CAS  Google Scholar 

  17. Carrado, K. A., Hayatsu, R., Botto, R.E., and Winans, R.E. (1990) Reactivity of anisoles on clay and pillared clay surfaces, Clays and Clay Minerals 38, 250–256.

    Article  CAS  Google Scholar 

  18. Chiarenzelli, J.R., Scrudato, R.J., Rafferty, D.E., Wunderlich, M.L., Roberts, R.N., Pagano, 1.1., and Yates, M. (1995) Photocatalytic degradation of simulated pesticide rinsates in water and water plus matrices, Chemosphere 30, 173–185.

    CAS  Google Scholar 

  19. Choudry, G.G., and Webster, G.R.B. (1985) Protocol guidelines for the investigations of photochemical fate of pesticides in water, air, and soils, Residue Reviews 96, 79–136.

    Article  Google Scholar 

  20. Cook, A.M., Beilstein, P., Grossenbacher, H., and Hütter, R. (1985) Ring cleavage and degradative pathway of cyanuric acid in bacteria, Biochemical Journal 231, 25–30.

    CAS  Google Scholar 

  21. Dec, J., and Bollag, J.-M. (1988) Microbial release and degradation of catechol and chlorophenols bound to synthetic humic acid, Soil Science Society of America Journal 52, 1366–1371.

    Article  CAS  Google Scholar 

  22. Dec, J., and Bollag, J.-M. (1994) Dehalogenation of chlorinated phenols during oxidative coupling, Environmental Science and Technology 28, 484–490.

    Article  CAS  Google Scholar 

  23. Dec, J., and Bollag, J.-M. (1996) Effect of various factors on dehalogenation of chlorinated phenols and anilines during oxidative coupling, Environmental Science and Technology 29, 657–663.

    Article  Google Scholar 

  24. Deiana, S., Gessa, C., Marchetti, M., and Usai, M. (1995) Phenolic acid redox properties: pH influence on iron(III) reduction by caffeic acid, Soil Science Society of America Journal 59, 1301–1307.

    Article  CAS  Google Scholar 

  25. Dragun, J., and Helling, C.S. (1985) Physicochemical and structural relationships of organic chemicals undergoing soil-and clay-catalyzed free-radical oxidation, Soil Science 139, 100–111.

    Article  CAS  Google Scholar 

  26. El-Amamy, M.M., and Mill, T. (1984) Hydrolysis kinetics of organic chemicals on montmorillonite and kaolinite surfaces as related to moisture content, Clays and Clay Minerals 32, 67–73.

    Article  CAS  Google Scholar 

  27. Felsot, A.S., and Shelton, D.R. (1993) Enhanced biodegradation of soil pesticides: interactions between physicochemical processes and microbial ecology, in D.M. Lynn and T. Carski (eds.), Sorption and Degradation of Pesticides and Organic Chemicals in Soil, SSSA Special Publication No.32, Soil Science Society of America, Madison, Wisconsin, pp. 227–251.

    Google Scholar 

  28. Fewson, C.A. (1988) Biodegradation of xenobiotic and other persistent compounds: the causes of recalcitrance, Trends in Biotechnology 6, 148–153.

    Article  CAS  Google Scholar 

  29. Flury, M. (1996) Experimental evidence of transport of pesticides through field soils–A review, Journal of Environmental Quality 25, 25–45.

    Article  CAS  Google Scholar 

  30. Fripiat, J.J., Cruz, M.I., Bohor, B.F., and Thomas, J., Jr. (1974) Interlamellar adsorption of carbon dioxide by smectites, Clays and Clay Minerals 22, 23–30.

    Article  CAS  Google Scholar 

  31. Fusi, P., Franci, M., Bosetto, M., and Calamai, L. (1990) Isoxazole complexes with homoionic montmorillonite, Agrochimica 34, 103–110.

    CAS  Google Scholar 

  32. Fusi, P., Franci, M., and Ristori, G.G. (1989) Interactions of isoxaben with montmorillonite, Applied Clay Science 4, 235–245.

    Article  CAS  Google Scholar 

  33. Fusi, P., Ristori, G.G., Cecconi, S., and Franci, M. (1983) Adsorption and degradation of fenarimol on montmorillonite, Clays and Clay Minerals 31, 312–314.

    Article  CAS  Google Scholar 

  34. Fusi, P., Ristori, G.G., and Franci, M. (1982) Adsorption and catalytic decomposition of 4-nitrobenzenesulphonylmethylcarbamate by smectite. Clays and Clay Minerals 30, 306–310.

    Article  CAS  Google Scholar 

  35. Fusi, P., Ristori, G.G., and Malquori, A. (1980) Montmorillonite-asulam interactions: I. Catalytic decomposition of asulam adsorbed on H- and Al-clay, Clay Minerals 15, 147–155.

    Article  CAS  Google Scholar 

  36. Gamble, D.K., and Khan, S.U. (1985) Atrazine hydrolysis in soils: catalysis by the acidic functional groups of fulvic acid, Canadian Journal of Soil Science 65, 435–443.

    Article  CAS  Google Scholar 

  37. Gohre, K., and Miller, G.C. (1983) Singlet oxygen generation on soil surfaces, Journal of Agricultural and Food Chemistry 31, 1104–1108.

    Article  CAS  Google Scholar 

  38. Gohre, K., and Miller, G.C. (1986) Photooxidation of thioether pesticides on soil surfaces, Journal of Agricultural and Food Chemistry 34, 709–713.

    Article  CAS  Google Scholar 

  39. Gohre, K., Scholl, R., and Miller, G.C. (1986) Singlet oxygen reactions on irradiated soil surfaces, Environmental Science and Technology 20, 934–938.

    Article  CAS  Google Scholar 

  40. Govindaraj, N., Mortland, M.M., and Boyd, S.A. (1987) Single electron transfer mechanism of oxidative dechlorination of 4-chloroanisole on copper(1I)-smectite, Environmental Science and Technology 21, 1119–1123.

    Article  CAS  Google Scholar 

  41. Haider, P., Barua, A.S., Raha, P., Biswas, B., Pal, S., Bhattacharya, A., Bedi, S., and Chowdhury, A. (1989) Studies on the photodegradation of pendimethalin in solvents and in kalyani soil. Chemosphere 18, 1611–1619.

    Article  Google Scholar 

  42. Hayes, M.H.B., and Himes, F.L. (1986) Nature and properties of humus-mineral complexes, in P.M. Huang and M. Schnitzer (eds.), Interactions of Soil Minerals with Natural Organic and Microbes, SSSA Special Publication No.17, Soil Science Society of America, Madison, Wisconsin, pp. 103–158.

    Google Scholar 

  43. Hayes, M.H.B., MacCarthy, P., Malcom, R.L., and Swift, R.S. (1989) Humic Substances II. In Search of Structure,John Wiley Sons, New York.

    Google Scholar 

  44. Heijman, C.G., Grieder, E., Holliger, C., and Schwarzenbach, R.P. (1995) Reduction of nitroaromatic compounds coupled to microbial iron reduction in laboratory aquifer columns, Environmental Science and Technology 29, 775–783.

    Article  Google Scholar 

  45. Hsu, T.-S., and Bartha, R. (1974) Biodegradation of chloroaniline-humus complexes in soil and culture solution, Soil Science 118, 213–220.

    Article  CAS  Google Scholar 

  46. Huang, P.M., (1990) Role of soil minerals in transformations of natural organics and xenobiotics in soil, in J.-M. Bollag and G. Stotzky (eds.), Soil Biochemistry vol. 6, Marcel Dekker, New York, pp. 29–115.

    Google Scholar 

  47. Isaacson, P.J., and Sawhney, B.L. (1983) Sorption and transformation of phenols on clay surfaces: effect of exchangeable cations, Clay Minerals 18, 253–265.

    Article  CAS  Google Scholar 

  48. Jensen-Korte, U., Anderson, C., and Spiteller, M. (1987) Photodegradation of pesticides in the presence of humic substances, The Science of the Total Environment 62, 335–340.

    Article  CAS  Google Scholar 

  49. Katagi, T (1990) Photoinduced oxidation of the organophosphorus fungicide tolclofos-methyl on clay minerals, Journal of Agricultural and Food Chemistry 38, 1595–1600.

    Article  CAS  Google Scholar 

  50. Katagi, T (1991) Photodegradation of the pyrethroid insecticide esfenvalerate on soil, clay minerals and humic acid surfaces, Journal of Agricultural and Food Chemistry 39, 1351–1356.

    Article  CAS  Google Scholar 

  51. Katagi, T (1993) Photodegradation of esfenvalerate in clay suspensions, Journal of Agricultural and Food Chemistry 41, 2178–2183.

    Article  CAS  Google Scholar 

  52. Kleatiwong, S., Nguyen, L.V., Hebert, V.R., Hackett, M., and Miller, G.C. (1990) Photolysis of chlorinated dioxins in organic solvents and on soils, Environmental Science and Technology 24, 1575–1580.

    Article  Google Scholar 

  53. Kukkonen, J., and Landrum, P.F. (1996) Distribution of organic carbon and organic xenobiotics among different particle-size fractions in sediments, Chemosphere 32, 1063–1076.

    Article  CAS  Google Scholar 

  54. Kumada, K., and Kato, H. (1970) Browning of pyrogallol as affected by clay minerals, Soil Science and Plant Nutrition 16, 195–200.

    Article  CAS  Google Scholar 

  55. Kung, K.-H., and McBride, M.B. (1988) Electron transfer processes between hydroquinone and iron oxides, Clays and Clay Minerals 36, 303–309.

    Article  CAS  Google Scholar 

  56. Laha, S., and Luthy, R.G. (1990) Oxidation of primary aromatic amines by manganese dioxide, Environmental Science and Technology 24, 363–373.

    Article  CAS  Google Scholar 

  57. Laszlo, P. (1987) Chemical reaction on clays, Science 235, 1473–1477.

    Article  CAS  Google Scholar 

  58. Lehmann, R.G., and Cheng, H.H. (1988) Reactivity of phenolic acids in soil and formation of oxidation products, Soil Science Society of America Journal 52, 1304–1309.

    Article  CAS  Google Scholar 

  59. Lehmann, R.G., Cheng, H.H., and Harsh, J.B. (1987) Oxidation of phenolic acids by soil iron and manganese oxides, Soil Science Society of America Journal 51, 352–356.

    Article  CAS  Google Scholar 

  60. Lopez-Gonzales, J. De D., and Valenzuela-Calahorro, C. (1970) Associated decomposition of DDT to DDE in the diffusion of DDT on homoionic clays, Journal of Agricultural and Food Chemistry 18, 520–523.

    Article  Google Scholar 

  61. Lovley, D.R., Baedecker, M.J., Lonergan, D.J., Cozzarelli, I.M., Phillips, E.J.P., and Siegel, D.I. (1989) Oxidation of aromatic contaminants coupled to microbial iron reduction, Nature 339, 297–300.

    Article  CAS  Google Scholar 

  62. Lovley, D.R., Woodward, J.C., and Chapelle, F.H. (1994) Stimulated anoxic biodegradation of aromatic hydrocarbons using Fe(III) ligands, Nature 370, 128–131.

    Article  CAS  Google Scholar 

  63. Marcheterre, L., Choudry, G.G:, and Webster, G.R.B. (1988) Environmental photochemistry of herbicides, Reviews of Environmental Contamination and Toxicology 103, 61–126.

    Google Scholar 

  64. Masaphy, S., Henis, Y., and Levanon, D. (1996) Manganese-enhanced biotransformation of atrazine by the white rot fungus Pleurotus pulmonarius and its correlation with oxidation activity, Applied and Environmental Microbiology 62, 3587–3593.

    CAS  Google Scholar 

  65. Mathew, R., and Khan, S.U. (1996) Photodegradation of metolachlor in water in the presence of soil mineral and organic constituents, Journal of Agricultural and Food Chemistry 44, 3996–4000.

    Article  CAS  Google Scholar 

  66. McBride, M.B. (1979) Reactivity of adsorbed and structural iron in hectorite as indicated by oxidation of benzidine, Clays and Clay Minerals 27, 224–230.

    Article  CAS  Google Scholar 

  67. McBride, M.B. (1985) Surface reactions of 3,3’,5,5’-tetramethyl benzidine on hectorite, Clays and Clay Minerals 27, 224–230

    Article  Google Scholar 

  68. McBride, M.B. (1987) Adsorption and oxidation of phenolic compounds by iron and manganese oxides, Soil Science Society of America Journal 51, 1466–1472.

    Article  CAS  Google Scholar 

  69. McBride, M.B. (1989) Surface chemistry of soil minerals, in J.B. Dixon and S.B. Weed (eds.), Mineral in Soil Environments, 2nd ed. SSSA Book Series No. 1, Soil Science Society of America, Madison, Wisconsin, pp. 35–88.

    Google Scholar 

  70. McBride, M.B., and Wesselink, L.G. (1988) Chemisorption of catechol on gibbsite, boehmite, and noncrystalline alumina surfaces, Environmental Science and Technology 22, 703–708.

    Article  CAS  Google Scholar 

  71. McBride, M.B., Sikora, F.J., and Wesselink, L.G. (1988) Complexation and catalyzed oxidative polymerization of catechol by aluminum in acidic solution, Soil Science Society of America Journal 52, 985–993.

    Article  CAS  Google Scholar 

  72. McKenzie, R.M. (1989) Manganese oxide and hydroxides, in J.B. Dixon and S.B. Weed (eds.), Mineral in Soil Environments, 2nd ed. SSSA Book Series No. 1, Soil Science Society of America, Madison, Wisconsin, pp. 439–465.

    Google Scholar 

  73. McLachlan, M.S., Horstmann, M., and Hinkel, M. (1996) Polychlorinated dibenzo-p-dioxins and dibenzofurans in sewage sludge: sources and fate following sludge application to land, The Science of the Total Environment 185, 109–123.

    Article  CAS  Google Scholar 

  74. Mikami, N., Imanishi, K., Yamada, H., and Miyamoto, J. (1985) Photodegradation of fenitrothion in water and on soil surface, and its hydrolysis in water, Journal of Pesticide Science 10, 263–272.

    Article  CAS  Google Scholar 

  75. Mikami, N., Takahashi, N., Haytashi, K., and Miyamoto, J. (1980) Photodegradation of fenvalerate (sumicidin) in water and on soil surfaces, Journal of Pesticide Science 5, 225–236.

    Article  CAS  Google Scholar 

  76. Miller, G.C., and Zepp, R.G. (1983) Extrapolating photolysis rates from the laboratory to the environment, Residue Reviews 85, 89–110.

    Google Scholar 

  77. Miller, G.C., Hebert, V.R., and Miller, W.W. (1989) Effect of sunlight on organic contaminants at the atmosphere-soil interface, B.L. Sawmey and K. Brown (eds.), Reaction and Movement of Organic Chemicals in Soils, SSSA Special Publication No. 22, Soil Science Society of America, Madison, Wisconsin, pp. 99–110.

    Google Scholar 

  78. Miller, R.G., Hebert, V.R., Millie, M.J., Mitzel, R., and Zepp, R.G. (1989) Photolysis of octachlorodibenzyl-p-dioxin on soils: Production of 2,3,7,8-TCDD, Chemosphere 18, 1265–1274.

    Article  Google Scholar 

  79. Mingelgrin, U., and Prost, R. (1989) Surface interactions of toxic organic chemicals with minerals, in Z. Gerstl, Y. Chen, U. Mingelgrin, and B. Yaron (eds:), Toxic Organic Chemicals in Porous Media, Spinger-Verlag, New York, pp. 91–135.

    Google Scholar 

  80. Mingelgrin, U., and Saltzman, S. (1979) Surface reactions of parathion on clays, Clays and Clay Minerals 27, 72–78.

    Article  CAS  Google Scholar 

  81. Mingelgrin, U., Gerstl, Z., and Yaron, B. (1975) Pirimiphos ethyl-clay surface interactions, Soil Science Society of America Proceedings 39, 834–837.

    Article  CAS  Google Scholar 

  82. Mingelgrin, U., Saltzman, S., and Yaron, B. (1977) A possible model for the surface-induced hydrolysis of organophosphorus pesticides on kaolinite clays, Soil Science Society of America Journal 41, 519–523.

    Article  CAS  Google Scholar 

  83. Mortland, M.M. (1986) Mechanisms of adsorption of nonhumic organic species by clays, in P.M. Huang and M. Schnitzer (eds.), Interactions of Soil Minerals with Natural Organic and Microbes, SSSA Special Publication n.17, Soil Science Society of America, Madison, Wisconsin, pp. 59–76.

    Google Scholar 

  84. Mortland, M.M., and Boyd, S.A. (1989) Polymerization and dechlorination of chloroethenes on Cu(II)-smectite via radical-cation intermediates, Environmental Science and Technology 23, 223–227.

    Article  CAS  Google Scholar 

  85. Mortland, M.M., and Halloran, L.J. (1976) Polymerization of aromatic molecules on smectite. Soil Science Society of America Journal 40, 367–370.

    Article  CAS  Google Scholar 

  86. Nguyen, T.T. (1986) Infrared spectroscopic study of the formamide-Na-montmorillonite complex. Conversion of s-triazine to formamide, Clays and Clay Minerals 34, 521–528.

    Article  CAS  Google Scholar 

  87. Nilles, G.P., and Zabik, M.J. (1974) Photochemistry of bioactive compounds. Multiphase/photodegradation of basalin, Journal of Agricultural and Food Chemistry 22, 684–688.

    Article  CAS  Google Scholar 

  88. Nilles, G.P., and Zabik, M.J. (1975) Photochemistry of bioactive compounds. Multiphase/photodegradation and mass spectral analysis of basagran, Journal of Agricultural and Food Chemistry 23, 410–415.

    Article  CAS  Google Scholar 

  89. Noblet, J.A., Smith, L.A., and Suffet, I.H.(M.) (1996) Influence of natural dissolved organic matter, temperature, and mixing on the hydrolysis of triazine and organophosphate pesticides, Journal of Agricultural and Food Chemistry 44, 3685–3693.

    Article  CAS  Google Scholar 

  90. Novak, J.M., Jayachandran, K., Moorman, T.B., and Weber, J.B. (1995) Sorption and binding of organic compounds in soils and their relation to bioavailability, in H.D. Skipper and R.F. Turco (eds.) Bioremediation-Science and Applications, SSSA Special Publication No.43, Soil Science Society of America, Madison, Wisconsin, pp. 13–31.

    Google Scholar 

  91. Ou, L.-T., and Thomas, J.E. (1994) Influence of soil organic matter and soil surfaces on a bacterial consortium that mineralizes fenamiphos, Soil Science Society of America Journal 58, 1148–1153.

    Article  CAS  Google Scholar 

  92. Pelizzetti, E., Maurino, V., Minero, C., Carlin, V., Pramauro, Zerbinati, O., and Tosato, M.L. (1990) Photocatalytic degradation of atrazine and other s-triazine herbicides, Environmental Science and Technology 24, 1559–1565.

    CAS  Google Scholar 

  93. Pelizzetti, E., Maurino, V., Minero, C., Zerbinati, O., and Borgarello, E. (1989) Photocatalytic degradation of bentazon by TiO2 particles, Chemosphere 18, 1437–1445.

    Article  CAS  Google Scholar 

  94. Perdue, E.M., and Wolfe, N.L. (1982) Modification of pollutant hydrolysis kinetics in the presence of humic substances, Environmental Science and Technology 16, 847–852.

    Article  CAS  Google Scholar 

  95. Pizzigallo, M.D.R., and Ruggiero, P. (1992), Catalytic transformation of chlorophenols by manganese oxides, Fresenius Environmental Bulletin 1, 428–433.

    CAS  Google Scholar 

  96. Pizzigallo, M.D.R., Ruggiero, P., Crecchio, C., and Mininni, R. (1995) Manganese and iron oxides as reactants for oxidation of chlorophenols, Soil Science Society of America Journal 59, 444–452.

    Article  CAS  Google Scholar 

  97. Pusino, A., and Gessa, C. (1990) Catalytic hydrolysis of diclofop-methyl on Ca-, Na-and Kmontmorillonites, Pesticide Science 30, 211–216.

    Article  CAS  Google Scholar 

  98. Pusino, A., Gessa, C., and Kozlowski, H. (1988) Catalytic hydrolysis of quinalphos on homoionic clays, Pesticide Science 24, 1–8.

    Article  CAS  Google Scholar 

  99. Pusino, A., Micera, G., Gessa, C., and Petretto, S. (1989) Interaction of diclofop and diclofopmethyl with Ala+-, Fei+-, and Cue+-saturated montmorillonite, Clays and Clay Minerals 37, 558–562.

    Article  CAS  Google Scholar 

  100. Pusino, A., Petretto, S., and Gessa, C. (1996) Montmorillonite surface-catalyzed hydrolysis of fenoxaprop-ethyl, Journal of Agricultural and Food Chemistry 44, 1150–1154.

    Article  CAS  Google Scholar 

  101. Rajagopal, B.S., Panda, S., and Sethunathan, N. (1986) Accelerated degradation of carbaryl and carbofuran in a flooded soil pretreated with hydrolysis products, 1-naphtol and carbofuran phenol, Bulletin of Environmental Contamination and Toxicology 36, 827–832.

    Article  Google Scholar 

  102. Remberger, M., Allard, A.-S., and Nielson, A.H. (1986) Biotransformation of chloroguaiacols, chlorocatechols, and chloroveratroles in sediments, Applied Environmental Microbiology 51, 552–558.

    Google Scholar 

  103. Ristori, G.G., Fusi, P., and Franci, M. (1981) Montmorillonite-asulam interactions: II. Catalytic decomposition of asulam adsorbed on Mg-, Ba-, Ca-, Li-, Na-, K- and Cs-clay, Clay Minerals 16, 125–137.

    Article  Google Scholar 

  104. Riter, R.E., Adams, V.D., George, D.B., and Kline, E.A. (1990) The effects of selected iron compounds on the sensitized photooxidation of bromacil, Chemosphere 21, 717–728.

    Article  Google Scholar 

  105. Ruggiero, P., Dec, J., and Bollag, J.-M. (1996) Soil as a catalytic system, in G. Stotzky and J.-M. Bollag (eds.), Soil Biochemistry, vol. 9, Marcel Dekker, Inc, New York, pp. 79–122.

    Google Scholar 

  106. Sabadie, J., and Coste, C.M. (1988) Dégradation catalytique de carbamates herbicides déposés sur bentonites homoioniques. VI. Cas du N-phenylcarbamate de propyne-2 yle, Weed Research 28, 1318.

    Google Scholar 

  107. Sabadie, J., Bastide, J., and Coste, C.M. (1985) Dégradation catalitique de carbamates herbicides déposés sur bentonites homoioniques. II. Cas du chlorbufame, Weed Research 25, 121–127.

    Article  Google Scholar 

  108. Saltzman, S., Yaron, B., and Mingelgrin, U. (1974) The surface catalyzed hydrolysis of parathion on kaolinite, Soil Science Society of America Proceedings 38, 231–234.

    Article  CAS  Google Scholar 

  109. Sanchez Camazano. M., and Sanchez Martin, M.J. (1983) Montmorillonite catalyzed hydrolysis of phosmet, Soil Science 136, 89–93.

    Article  Google Scholar 

  110. Sanchez Camazano, M., and Sanchez Martin, M.J. (1991) Hydrolysis of azinphosmethyl induced by the surface of smectites, Clays and Clay Minerals 39, 609–613.

    Article  CAS  Google Scholar 

  111. Sanchez Martin, M.J., and Sanchez Camazano, M. (1984) Aspects of the adsorption of azinphosmethyl by smectites, Journal of Agricultural and Food Chemistry 32, 720–725.

    Article  CAS  Google Scholar 

  112. Sawhney, B.L. (1985) Vapor-phase sorption and polymerization of phenols by smectite in air and nitrogen, Clays and Clay Minerals 33, 123–127.

    Article  Google Scholar 

  113. Sawhney, B.L., Kozloski, R.K., Isaacson, P.J., and Gent, P.N. (1984) Polymerization of 2,6dimethylphenol on smectite surfaces, Clays and Clay Minerals 32, 108–114.

    Article  Google Scholar 

  114. Saxena, A., and Bartha, R. (1983) Microbial mineralization of humic acid-3,4-dichloroaniline complexes, Soil Biology and Biochemistry 15, 59–62.

    Article  CAS  Google Scholar 

  115. Schnitzer, M. (1978) Humic substances chemistry and reactions, in M. Schnitzer and S.U. Khan (eds.), Soil Organic Matter, Elsevier, Amsterdam, pp. 1–64.

    Chapter  Google Scholar 

  116. Schulten, H.R., and Schnitzer, M. (1993) A state of the art structural concept for humic substances, Naturwissenschaften 80, 29–30.

    Article  CAS  Google Scholar 

  117. Scow, K.M. (1993) Effect of sorption-desorption and diffusion processes on the kinetics of biodegradation of organic chemicals in soil, in D.M. Lynn and T. Carski (eds.), Sorption and Degradation of Pesticides and Organic Chemicals in Soil, SSSA Special Publication No.32, Soil Science Society of America, Madison, Wisconsin, pp. 73–114.

    Google Scholar 

  118. Senesi, N. (1990) Application of electron spin resonance (ESR) spectroscopy in soil chemistry, Advances in Soil Science 14, 77–130.

    Article  Google Scholar 

  119. Senesi, N., and Steelink, C. (1989) Application of ESR spectroscopy to the study of humic substances, in M.H.B. Hayes, P. MacCarthy, R.L. Malcom, and R.S. Swift (eds.), Humic Substances H. In Search of Structure, John Wiley Sons, New York, pp. 373–408.

    Google Scholar 

  120. Shindo, H., and Huang, P.M. (1982) Role of Mn(IV) oxide in abiotic formation of humic substances in the environment, Nature 298, 363–365.

    Article  CAS  Google Scholar 

  121. Shindo, H., and Huang, P.M. (1984) Catalytic effects of manganese(IV), iron(IH), aluminum, and silicon oxides on the formation of phenolic polymers, Soil Science Society of America Journal 48, 927–934.

    Article  Google Scholar 

  122. Shindo, H., and Huang, P.M. (1984) Significance of Mn(IV) oxide in abiotic formation of organic nitrogen complexes in natural environments, Nature 308, 57–58.

    Article  Google Scholar 

  123. Shindo, H., and Huang, P.M. (1985) The catalytic power of inorganic components in the abiotic synthesis of hydroquinone-derived humic polymers, Applied Clay Science 1, 71–81.

    Article  Google Scholar 

  124. Sjoblad, R.D., and Bollag, J.-M. (1981) Oxidative coupling of aromatic compounds by enzymes from soil microorganisms, in E.A. Paul and J.N. Ladd (eds.), Soil Biochemistry, vol. 5, Marcel Dekker, New York, pp. 113–152.

    Google Scholar 

  125. Skipper, H.D., Volk, V.V., Mortland, M.M., and Raman, K.V. (1978) Hydrolysis of atrazine on soil colloids, Weed Science 26, 46–51.

    CAS  Google Scholar 

  126. Soma, Y., and Soma, M. (1989) Formation of hydroxydibenzofurans from chlorophenols adsorbed on Fe-ion exchanged montmorillonite, Chemosphere 18, 1895–1902.

    Article  CAS  Google Scholar 

  127. Somasundaram, L., Coats, J.R., and Racke, K.D. (1989) Degradation of pesticides in soil as influenced by the presence of hydrolysis metabolites, Journal of Environmental Science and Health B24, 457–478.

    Article  Google Scholar 

  128. Sparks, D.L. (1995) Environmental Soil Chemistry, Academic Press, New York.

    Google Scholar 

  129. Spencer, W.F., Adams, J.D., Soup, T.D., and Spear, R.C. (1980) Conversion of parathion to paraoxon on soil dusts and clay minerals as affected by ozone and UV light, Journal of Agricultural and Food Chemistry 28, 367–371.

    Google Scholar 

  130. Sposito, G. (1984) The surface chemistry of soils, Oxford University Press, New York. 131.Stevenson, F.J. (1994) Humic Chemistry, 2nd Ed. John Wiley Sons, New York.

    Google Scholar 

  131. Stone, A.T. (1987) Reductive dissolution of manganese(IH/IV) oxides by substituted phenols, Environmental Science and Technology 21, 979–988.

    Article  Google Scholar 

  132. Stone, A.T. (1991) Oxidation and hydrolysis of ionizable organic pollutants at hydrous metal oxide surface, in D.L. Sparks and D.L. Suarez (eds.), Rates of Soil Chemical Processes, SSSA Special Publication No.27, Soil Science Society of America, Madison, Wisconsin, pp. 231–254.

    Google Scholar 

  133. Stone, A.T., and Morgan, J.J. (1984) Reduction and dissolution of manganese(III) and manganese(IV) oxides by organics. 1. Reaction with hydroquinone, Environmental Science and Technology 18, 450–456.

    Article  Google Scholar 

  134. Stone, A.T., and Morgan, J.J. (1984) Reduction and dissolution of manganese(III) and manganese(IV) oxides by organics: 2. Survey of the reactivity of organics, Environmental Science and Technology 18, 617–624.

    Article  Google Scholar 

  135. Stone, A.T., Torrents, A., Smolen, J., Vasudevan, D., and Hadley, J. (1993) Adsorption of organic compounds possessing ligand donor groups at the oxide/water interface, Environmental Science and Technology 27, 895–909.

    Article  Google Scholar 

  136. Stotzky, G. (1986) Influence of soil mineral colloids on metabolic processes, growth, adhesion, and ecology of microbes and viruses, in P.M. Huang and M. Schnitzer (eds.), Interactions of Soil Minerals with Natural Organic and Microbes, SSSA Special Publication No.17, Soil Science Society of America, Madison, Wisconsin, pp. 305–428.

    Google Scholar 

  137. Takahashi, N., Mikami, N., Yamada, H., and Miyamoto, J. (1985) Photodegradation of the pyrethroid insecticide fenpropathrin in water, on soil and on plant foliage, Pesticide Science 16, 119–131.

    Article  Google Scholar 

  138. Toole, A.P., and Crosby, D.G. (1989) Environmental persistence and fate of fenoxaprop-ethyl, Environmental Toxicology and Chemistry 8, 1171–1176.

    Article  CAS  Google Scholar 

  139. Torrents, A., and Stone, A.T. (1991) Hydrolysis of phenyl picolinate at the mineral/water interface, Environmental Science and Technology 25, 143–149.

    Article  CAS  Google Scholar 

  140. Torrents, A., and Stone, A.T. (1994) Oxide surface-catalyzed hydrolysis of carboxylate esters and phosphorothioate esters, Soil Science Society of America Journal 58, 738–745.

    Article  CAS  Google Scholar 

  141. Tratnyek, P.G., and Macalady, D.L. (1989) Abiotic reduction of nitro aromatic pesticides in anaerobic laboratory systems, Journal of Agricultural and Food Chemistry 37, 248–254.

    Article  CAS  Google Scholar 

  142. Ukrainczyk, L., and McBride, M.B. (1992) Oxidation of phenol in acidic aqueous suspension of manganese oxides, Clays and Clay Minerals 40, 157–166.

    Article  CAS  Google Scholar 

  143. Ukrainczyk, L., and McBride, M.B. (1993) Oxidation and dechlorination of chlorophenols in dilute aqueous suspension of manganese oxides: reaction products, Environmental Toxicology and Chemistry 12, 2015–2022.

    Article  Google Scholar 

  144. Ukrainczyk, L., and McBride, M.B. (1993) The oxidative dechlorination reaction of 2,4,6trichlorophenol in dilute aqueous suspension of manganese oxides, Environmental Toxicology and Chemistry 12, 2005–2014.

    Article  CAS  Google Scholar 

  145. Ulrich, H.-J., and Stone, A.T. (1989) Oxidation of chlorophenols adsorbed to manganese oxide surfaces, Environmental Science and Technology 23, 421–428.

    Article  Google Scholar 

  146. Vasudevan, D., and Stone, A.T. (1996) Adsorption of catechols, 2-aminophenols, and 1,2phenylenediamines at the metal (hydr)oxide/water interface: effect of ring substituents on the adsorption onto TiO2, Environmental Science and Technology 30, 1604–1613.

    Article  Google Scholar 

  147. Wang, M.-C., and Huang, P.M. (1987) Polycondensation of pyrogallol and glycine and the associated reactions as catalyzed by birnessite, The Science of the Total Environment 62, 435–442.

    Article  CAS  Google Scholar 

  148. Wang, M.C., and Huang, P.M. (1986) Humic macromolecule interlayering in nontronite through interaction with phenol monomers, Nature 323, 529–531.

    Article  CAS  Google Scholar 

  149. Wang, M.C., and Huang, P.M. (1987) Catalytic polymerization of hydroquinone by nontronite, Canadian Soil Science 67, 867–875.

    Article  CAS  Google Scholar 

  150. Wang, M.C., and Huang, P.M. (1989) Catalytic power of nontronite, kaolinite and quartz and their reaction sites in the formation of hydroquinone-derived polymers, Applied Clay Science 4, 43–57.

    Article  CAS  Google Scholar 

  151. Wang, M.C., and Huang, P.M. (1989) Pyrogallol transformations as catalyzed by nontronite, bentonite, and kaolinite, Clays and Clay Minerals 37, 525–531.

    Article  CAS  Google Scholar 

  152. Wang, M.-C., and Lin, C.-H. (1993) Enhanced mineralization of amino acids by birnessite as influenced by pyrogallol, Soil Science Society of America Journal 57, 88–93.

    Article  CAS  Google Scholar 

  153. Wang, T.S.C., Chen, J.-H., and Hsiang, W.-M. (1985) Catalytic synthesis of humic acids containing various amino acids and dipeptides, Soil Science 140, 3–10.

    Article  CAS  Google Scholar 

  154. Wang, T.S.C., Huang, P.M., Chou, C.-H., and Chen, J.-H. (1986) The role of soil minerals in the abiotic polymerization of phenolic compounds and formation of humic substances, in P.M. Huang and M. Schnitzer (eds.), Interactions of Soil Minerals with Natural Organic and Microbes, SSSA Special Publication No.17, Soil Science Society of America, Madison, Wisconsin, pp. 251–281.

    Google Scholar 

  155. Wang, T.S.C., and Wang, M.-C., and Huang, P.M. (1983) Catalytic synthesis of humic substances by using aluminas as catalysts, Soil Science 136, 226–230.

    Article  CAS  Google Scholar 

  156. Weber, E.J., Spidle, D.L., and Thorn, K.A. (1996) Covalent binding of aniline to humic substances. 1. Kinetic studies, Environmental Science and Technology 30, 2755–2763.

    Article  CAS  Google Scholar 

  157. Weber, J.B., Best, J.SA., and Gonese, J.U. (1993) Bioavailability and bioactivity of sorbed organic chemicals, in D.M. Lynn and T. Carski (eds.), Sorption and Degradation of Pesticides and Organic Chemicals in Soil, SSSA Special Publication No.32, Soil Science Society of America, Madison, Wisconsin, pp. 153–196.

    Google Scholar 

  158. Whelan, G., and Sims, R.C. (1995) Mn-catalyzed oxidation of naphtalenediol, Hazardous Waste Hazardous Materials 12, 381–394.

    Article  CAS  Google Scholar 

  159. White, J.L. (1975/76) Determination of susceptibility of s-triazine herbicides to protonation and hydrolysis by mineral surfaces, Archives of Environmental Contamination and Toxicology 3, 461–469.

    Google Scholar 

  160. Williams, G.R. (1984) Mechanisms of catechol oxidation in soil suspension: a dual-wavelength spectrophotometric study, Soil Biology and Biochemistry 16, 259–263.

    Article  CAS  Google Scholar 

  161. Wolfe, N.L., Mingelgrin, U., and Miller, G.C. (1990) Abiotic transformations in water, sediments, and soil, in H.H. Cheng (ed.), Pesticides in the Soil Environment: Processes, Impacts, and Modelling, Number 2 in Soil Science Society of America Book Series, Soil Science Society of America, Madison, Wisconsin, pp. 103–168.

    Google Scholar 

  162. Yaron, B. (1975) Chemical conversion of parathion on soil surfaces, Soil Science Society of America Proceedings 39, 639–643.

    Article  CAS  Google Scholar 

  163. Yaron, B. (1978) Some aspects of surface interactions of clays with organophosphorus pesticides, Soil Science 125, 210–216.

    Article  CAS  Google Scholar 

  164. You, G., Saylcs, G., Kupferle, M.J., Kim, I.S., and Bishop, P.L. (1996) Anaerobic DDT biotransformation: enhancement by application of surfactants and low oxidation reduction potential, Chemosphere 11, 2269–2284.

    Google Scholar 

  165. Zepp, R.G. (1988) Environmental photoprocesses involving natural organic matter, in F.H. Frimmel and R.F. Christman (eds.), Humic Substances and their Role in the Environment, John Wiley and Sons, New York, pp. 193–214.

    Google Scholar 

  166. Zepp, R.G., Schlotzhauer, P.F., and Sink, R.M. (1985) Photosensitized transformations involving electron energy transfer in natural waters: role of humic substances, Environmental Science and Technology 19, 74–81.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ruggiero, P. (1999). Abiotic Transformations of Organic Xenobiotics in Soils: A Compounding Factor in the Assessment of Bioavailability. In: Baveye, P., Block, JC., Goncharuk, V.V. (eds) Bioavailability of Organic Xenobiotics in the Environment. NATO ASI Series, vol 64. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9235-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9235-2_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5311-4

  • Online ISBN: 978-94-015-9235-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics