Skip to main content

Biologically Related Aspects of Nanoparticles, Nanostructured Materials, and Nanodevices

  • Chapter
Nanostructure Science and Technology

Abstract

Biological molecules and systems have a number of attributes that make them highly suitable for nanotechnology applications. For example, proteins fold into precisely defined three-dimensional shapes, and nucleic acids assemble according to well-understood rules. Antibodies are highly specific in recognizing and binding their ligands, and biological assemblies such as molecular motors can perform transport operations. Because of these and other favorable properties, biomolecules, biophysics, and biology are themes that run through all of the topics of this report.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Adleman, L.M. 1994. Molecular computation to solutions of combinatorial problems. Science 266:1021–1024.

    Article  CAS  Google Scholar 

  • Aizawa, M. 1994. Molecular interfacing for protein molecular devices and neurodevices. IEEE Engineering in Medicine and Biology (Feb./March):94–102.

    Google Scholar 

  • Aksay, I.A., M. Trau, S. Manne, I. Honma, N. Yao, L. Zhou, P. Fenter, P.M. Eisenberger, and S.M. Gruner. 1996. Biomimetic pathways for assembling inorganic thin films. Science 273:892–898.

    Article  CAS  Google Scholar 

  • Aksay, Ilhan. 1998. Nanostructured ceramics through self-assembly. In R&D status and trends, ed. Siegel et al.

    Google Scholar 

  • Allara, D.L. 1996. Nanoscale structures engineered by molecular self-assembly of functionalized monolayers. In Nanofabrication and biosystems, ed. Hoch et al.

    Google Scholar 

  • Birge, R.R. 1995. Protein based computers. Sci. Am. (Mar.):90–95.

    Google Scholar 

  • Bishop, A.R., and R.G. Nuzzo. 1996. Self-assembled monolayers: Recent developments and applications. Current Opinion in Colloid & Interface Sci. 1:127–136.

    Article  CAS  Google Scholar 

  • Brus, L. 1996. Semiconductor colloids: Individual nanocrystals, opals and porous silicon. Current Opinion in Colloid & Interface Science1:197–201

    Article  CAS  Google Scholar 

  • Chemical Engineering News. 1997. Particulate matter health studies to be reanalyzed (August 18):33.

    Google Scholar 

  • Chen, J. and N.C. Seeman. 1991. The synthesis from DNA of a molecule with the connectivity of a cube. Nature 350:631–633.

    Article  CAS  Google Scholar 

  • Chianelli, R.R. 1998. Synthesis, fundamental properties and applications of nanocrystals, sheets, and fullerenes based on layered transition metal chalcogenides. In R&D status and trends, ed. Siegel et al.

    Google Scholar 

  • Conference on Molecular Nanotechnology. 1997. 2nd Annual International Conference, December 8–9. La Jolla, CA.

    Google Scholar 

  • Deming, T.J., M.J. Fournier, T.L. Mason, and D.A. Tirrell. 1997. Biosynthetic incorporation and chemical modification of alkene functionality in genetically engineered polymers. J. Macromol. Sci. Pure Appl. Chem. A 34:2143–2150.

    Article  Google Scholar 

  • Goddard, W.A. 1998. Nanoscale theory and simulation. In R&D status and trends, ed. R. Siegel et al.

    Google Scholar 

  • Guarnieri, F., M. Fliss, and C. Bancroft. 1996. Making DNA Add. Science 273:220–223.

    Article  CAS  Google Scholar 

  • Hanes, J., J.L. Cleland, and R. Langer. 1997. New advances in microsphere-based singledose vaccines. Advanced Drug Delivery Reviews 28:97–119.

    Article  CAS  Google Scholar 

  • Hietpas, P.B., S.D. Gilman, R.A. Lee, M.R. Wood, N. Winograd, and A.G. Ewing. 1996. Development of votammetric methods, capillary electrophoresis and tof sims imaging for constituent analysis of single cells. In Nanofabrication and biosystems, ed. Hoch et al.

    Google Scholar 

  • Ho, S.V., P.W. Sheridan, and E. Krupetsky. 1996. Supported polymeric liquid membranes for removing organics from aqueous solutions. 1. Transport characteristics of polyglycol liquid membranes. J. Membrane Sci. 112:13–27.

    Article  CAS  Google Scholar 

  • Hoch, H.C., L.W. Jelinski, and H.G. Craighead, eds. 1996. Nanofabrication and biosystems. New York: Cambridge University Press.

    Google Scholar 

  • Hubbell, J.A., and R. Langer. 1995. Tissue engineering. Chem. Eng. News (March 13): 42–54.

    Article  Google Scholar 

  • Imae, Y., and T. Atsumi. 1989. T. Na+-driven bacterial flagellar motors: A mini-review. J. Bioenergetics and Biomembranes 21:705–716.

    Article  CAS  Google Scholar 

  • Jaworek, T., D. Deher, G. Wegner, R.H. Wieringa, and A.J. Schouten. 1998. Electromechanical properties of an ultrathin layer of directionally aligned helical polypeptides. Science 279:57–60.

    Article  CAS  Google Scholar 

  • Karak, N., and S. Maiti. 1997. Dendritic polymers: A class of novel material. J. Polym. Mater.14:105.

    Google Scholar 

  • Kirschvink, J.L., A. Koyayashi-Kirschvink, and B.J. Woodford. 1992. Magnetite biomineralization in the human brain. Proc. Nat’l. Acad. Sci. USA 89:7683–7687.

    Article  CAS  Google Scholar 

  • Krejchi, M.T., E.D.T. Atkins, A.J. Waddon, M.J. Fournier, T.L. Mason, and D.A. Tirrell. 1994. Chemical sequence control of beta-sheet assembly in macromolecular crystals of periodic proteins. Science 265:1427–1432.

    Article  CAS  Google Scholar 

  • Krejchi, M.T., S.J. Cooper, Y. Deguchi, E.D.T. Atkins, M.J. Fournier, T.L. Mason, and D.A. Tirrell. 1997. Crystal structures of chain-folded antiparallel beta-sheet assemblies from sequence-designed periodic polypeptides. Macromolecules 30:5012–5024.

    Article  CAS  Google Scholar 

  • Kumar, A., and G.M. Whitesides. 1993. Features of gold having micrometer to centimeter dimensions can be formed through a combination of staming with an elastomeric stamp and an alkanethiol ink followed by chemical etching. App. Phys. Lett. 63:2002–2004.

    Article  CAS  Google Scholar 

  • Mao, C., W. Sun, and N.C. Seeman. 1997. Construction of Borromean rings from DNA. Nature 386:137–138.

    Article  CAS  Google Scholar 

  • McConnell, H.M. 1996. Light-addressable potentiometric sensor: Applications to drug discovery. In Nanofabrication and biosystems, ed. Hoch et al.

    Google Scholar 

  • Moore, J.C., H.M. Jin, O. Kuchner, and F.H. Arnold. 1997. Strategies for the in vitro evolution of protein function: Enzyme evolution by random recombination of improved sequences. J. Mol. Biol. 272:336–347.

    Article  CAS  Google Scholar 

  • Muir, T.W., P.E. Dawson, and S.B.H. Kent. 1997. Protein synthesis by chemical ligation of unprotected peptides in aqueous solution. Meth. Enzymol. 289:266–298.

    Article  CAS  Google Scholar 

  • NRC (National Research Council). 1996. Biomolecular self-assembling materials: Scientific and technological frontiers. Washington, DC: National Academy Press.

    Google Scholar 

  • NRC (National Research Council).1994. Hierarchical structures in biology as a guide for new materials technology. Washington, DC: National Academy Press.

    Google Scholar 

  • Noji, H., R. Yasuda, M. Yoshida, and K. Kinosita, Jr. 1997. Direct observation of the rotation of F-1-ATPase. Nature. 386:299–302.

    Article  CAS  Google Scholar 

  • Qutubuddin, S., J.M. Wiencek, A. Nabi, and J.Y. Boo. 1994. Hemoglobin extraction using cosurfactant-free nonionic microemulsions. Sep. Sci. andTechnology 29:923–929.

    CAS  Google Scholar 

  • Rousseau, D.L., and L.W. Jelinski. 1991. Biophysics. In Encyclopedia ofApplied Physics Vol. 2. New York: VCH Publishers.

    Google Scholar 

  • Rugar, D., O. Zuger, S. Hoen, C.S. Yannoni, H.M. Veith, and R.D. Kendrick. 1994. Force detection of nuclear magnetic resonance. Science 264:1560–1563.

    Article  CAS  Google Scholar 

  • Schnur, J.M. 1993. Lipid tubules: A paradigm for molecularly engineering structures. Science 262:1669–1676.

    Article  CAS  Google Scholar 

  • Schnur, J.M., R. Price and A.S. Rudolph. 1994. Biologically engineered microstructures-Controlled release applications. J. Controlled Release 28:3–13.

    Article  CAS  Google Scholar 

  • Seeman, N.C. 1998. DNA nanotechnology. In R&D status and trends, ed. Siegel et al.

    Google Scholar 

  • Seventh Biophysical Discussions. 1995. Molecular motors: Structure, mechanics and energy transduction. Biophys. J. 68 : Supplement S.

    Google Scholar 

  • Shenton, W., D. Pum, U.B. Sleytr, and S. Mann. 1997. S. synthesis of cadmium sulphide superlattices using self-assembled bacterial S-layers. Nature 389:585–587.

    Article  CAS  Google Scholar 

  • Siegel, R.W., E. Hu, and M.C. Roco. 1998. R&D status and trends in nanoparticles, nanostructured materials, and nanodevices in the United States. Proceedings of the May 8–9, 1997 workshop. Baltimore: Loyola College, International Technology Research Institute. NTIS #PB98–117914.

    Google Scholar 

  • Sligar, S. 1998. Molecular and electronic nanostructures. In R&D status and trends, ed. Siegel et al.

    Google Scholar 

  • Sosnowski, R.G., E. Tu, W.F. Butler, J.P. O’Connell, and M.J. Heller. 1997. Rapid determination of single base mismatch mutations in DNA hybrids by direct electric field control. P. Natl. Acad. Sci. USA 94(4)(Feb. 18):1119–1123.

    Article  CAS  Google Scholar 

  • Stuckey, G.D. 1998. High surface area materials. In R&D status and trends, ed. Siegel et al.

    Google Scholar 

  • Stupp, S.I., V. LeBonheur, K. Wlaker, L.S. Li, K.E. Huggins, M. Keser, and A. Armstutz. 1997. Supramolecular materials: Self-organized nanostructures. Science 276:384–389.

    Article  CAS  Google Scholar 

  • Svoboda, K., and S.M. Block. 1994. Biological applications of optical forces. Ann. Rev. Biophys. Biomol. Struct. 23:247–285.

    Article  CAS  Google Scholar 

  • Symposium on Bio-Nano Electronics. 1997. Proceedings. November 15, Toyo University, Japan.

    Google Scholar 

  • Tirrell, J.G., M.J. Fournier, T.L. Mason, and D.A. Tirrell. 1994. Niomolecular materials. Chem. Eng. News 72(January 30):40–51.

    Article  CAS  Google Scholar 

  • Toth, E., D. Pubanz, S. Vauthey, L. Helm, and A.E. Merbach. 1996. The role of water exchange in attaining maximum relaxivities for dendrimeric mri contrast agents. Chemistry-A European Journal 2:1607–1615.

    Article  CAS  Google Scholar 

  • US/EC Workshop on Nanobiotechnology. 1999. Workshop of September 23–24, 1997, Washington, D.C. (report available from the National Science Foundation, Washington, DC, in 1998).

    Google Scholar 

  • Vidyasankar, S., M. Ru, and F.H. Arnold. 1997. Molecularly imprinted ligand-exchange adsorbents for the chiral separation of underivatized amino acids. J. Chromatography A 775:51–63.

    Article  CAS  Google Scholar 

  • Wildoer, J.W.G., L.C. Venema, A.G. Rinzler, R.E. Smalley, and C. Dekker. 1998. Electronic structure of atomically resolved carbon nanotubes. Nature 391:59–62.

    Article  CAS  Google Scholar 

  • Winningham, M.J. and D.Y. Sogah. 1997. A modular approach to polymer architecture control via catenation of prefabricated biomolecular segments: Polymers containing parallel beta-sheets templated by a phenoxathiin-based reverse turn mimic. Macromolecules 30: 862 - 876.

    Article  CAS  Google Scholar 

  • Yin, H., M.D. Wang, K. Svoboda, R. Landick, J. Gelles, and S.M. Block. 1995. Transcription against an applied force. Science 270:1653–1657.

    Article  CAS  Google Scholar 

  • Ying, J.Y. 1998. Nanostructure processing of advanced catalytic materials. In R&D status and trends, ed. Siegel et al.

    Google Scholar 

  • Yu, S.J.M., V.P. Conticello, G.H. Zhang, C. Kayser, M.J. Fournier, T.L. Mason, and D.A. Tirrell. 1997. Smectic ordering in solutions and films of a rod-like polymer owing to monodispersity of chain length. Nature 389:167–170.

    Article  CAS  Google Scholar 

  • Zhang, Y., and N.C. Seeman. 1994. The construction of a DNA truncated octahedron. J. Am. Chem. Soc. 116:1661–1669.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Jelinski, L. (1999). Biologically Related Aspects of Nanoparticles, Nanostructured Materials, and Nanodevices. In: Nanostructure Science and Technology. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9185-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9185-0_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5277-3

  • Online ISBN: 978-94-015-9185-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics