Skip to main content

Apatite Fission Track Thermochronology of Paleozoic Sandstones and the Hill-Intrusion, Northern Linksrheinisches Schiefergebirge, Germany

  • Chapter
Advances in Fission-Track Geochronology

Part of the book series: Solid Earth Sciences Library ((SESL,volume 10))

Abstract

A fission track investigation was carried out on apatite from Paleozoic sandstones along a NW-SE transect and the Hill-intrusion in the northern Linksrheinisches Schiefergebirge. The study included age determinations, confined track length and chemical analysis as well as computer modeling of the thermal history. Apatite fission track ages vary between 130±11 Ma and 239±13 Ma. Mean confined track lengths range from 12.35±0.36 tm to 13.20±0.73 µm. Fluorapatite grains with no chlorine content are the main components. Single grain ages of the Paleozoic sandstones and the tonalite decrease with increasing fluorine and decreasing OH and chlorine content. Single grain ages from wallrock sandstones of the galena-sphalerite-calcite-quartz veins show no relation with the chemical composition. Computer modeling of the thermal history using an inverse model allowed to distinguish an Upper Paleozoic to Lower Mesozoic component (up to 220 Ma), a Mesozoic component, and a post-Campanian component. An average cooling rate below 1.5°C/Ma was estimated for the Upper Paleozoic thermal history. The subsidence of the Graben of Malmedy led to the accumulation of 3,000m of sediments during Permian and Lower Triassic. Apatite grains of the Devonian sandstones of the Venn-Weser-Inde nappe were completely annealed after deposition and reached the PAZ at 260 Ma. With a normal geothermal gradient this temperature would imply 3,000m to 4,000m of now eroded deformed Devonian and Carboniferous units.

The thermal history of the Mesozoic component is constrained by slow cooling of 0.3°C/Ma up to 120 Ma and faster cooling of ≈1.5°C/Ma up to 80 Ma. An exhumation of ≈1,000m might have occurred if a stationary normal geothermal gradient is applied to the first time interval. The cooling between 120 Ma and 80 Ma which point to an exhumation of ≈2,000m is interpreted as the main Mesozoic exhumation of the northern Linksrheinisches Schiefergebirge. Apatite fission track data of a Namurian sandstone taken adjacent to the galena-sphalerite-calcite vein in the Venn-Weser-Inde nappe point to a mineralization age between 200 Ma and 160 Ma. The age of the mineralization in the Eastardennen-Eifel nappe revealed by the fission track data is younger (160 – 140 Ma).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Albers H.J. and Felder W.M. (1979): Litho-, Biostratigraphie und Palökologie der Oberkreide und des Alttertiärs (Präobersanton–Dan/Paläozän) von Aachen-Südlimburg (Niederlande, Deutschland, Belgien). In: Aspekte der Kreide Europas. Internat. Union geol. Sci. 6, 47–84.

    Google Scholar 

  • Barbarand J., Pagel M., Blanc P., Braun J.-J., Chaussidon M., Vetil C. and Walgenwitz F. (1996): Combined Cathodoluminescence spectra, fission-track age and chemistry of detrital apatite grains: Towards a better understanding of fission track annealing. Int. Workshop on Fission Track Dating (abstr. vol.), 5.

    Google Scholar 

  • Berthelsen A. (1992): Mobile Europe. In: A Continent revealed, The European Geotraverse (eds. Blundell D., Freeman R. and Mueller St. ), pp. 11–32.

    Google Scholar 

  • Bless M.J.M., Bouckaert J., Camelbeeck T., Dejonghe L., Demou-Lin A., Dupuis C., Felder P.J., Geukens F., Gullentops F., Hance L., Jagt J.W.M., Juvigne E., Kramm U., Ozer A., Pissait A., Robas-Zynski F., Schumacker R., Smolderen A., Spaeth G., Steemans Ph., Streel M., Vandenven G., Vanguestaine M., Walter R. & Wolf M. (1991): The Stavelot Massif from Cambrian to recent. A survey of the present state of knowledge. Ann. Soc. Géol. Belg., 113, 53–73.

    Google Scholar 

  • Boneß M., Haak U. & Feldmann K.H. (1990): Rb/Sr-Datierung der hydrothermalen Pb-Zn Vererzung von Bad Grund (Harz), BRD. Chem. Erde 50, 1–25.

    Google Scholar 

  • Brandon M.T. (1992): Decomposition of Fission-Track grain-age distributions. Am. J. Sc. 292, 535–564.

    Article  Google Scholar 

  • Carpéna J. (1996): Compositional variation of natural apatites subjected to fission track analysis. Int. Workshop on Fission Track Dating (abstr. vol.), 7.

    Google Scholar 

  • Chatt A. and Holzbecher J. (1992): Geoanalytical usage of Dalhousie University Slowpoke-2 Reactor, in: Short Course on low temperature thermochronology (eds. Zentilli M. and Reynolds P.H.), Min. Ass. Can. Short Course V 20, Appendix 3, 211–224.

    Google Scholar 

  • Crowley K.D., Cameron M. and Schaefer R.L. (1991): Experimental studies of annealing of etched fission tracks in fluorapatite. Geoch. Cosmoch. Acta 55, 1449–1465.

    Article  Google Scholar 

  • Donelick R.A. (1988): Etchable Fission Track Length Reduction in Apatite: Experimental Observations, Theory and Geological Application. Unpub. Ph.D. thesis, Renssalaer polytechnic Institute, Troy, New York, USA, 414 p.

    Google Scholar 

  • Echle W., Plüger W.L., Zielinski J., Frank B. and Scheps V. (1985): Petrography, Mineralogy, and Geochemistry of the Salmian Rocks from Research Borehole Konzen, Hohes Venn (West Germany). N. Jb. Geol. Paläont. Abh. 171, 31–50.

    Google Scholar 

  • Franke W. (1992): Phanerozoic structures and events in central Europe. In: A Continent revealed–The European Geotraverse (eds. Blundell D., Freeman R. and Mueller St. ), 164–179.

    Google Scholar 

  • Fleischer R.L., Price P.B. and Walker R.M. (1975): Nuclear tracks in Solids: Principles and Applications. University of California Press, Berkeley, California.

    Google Scholar 

  • Galbraith R.F. (1988): Graphical display of estimates having differing standard errors. Technometrics 30, 271–281.

    Article  Google Scholar 

  • Galbraith R.F. (1990): The radial plot: Graphical Assessment of spread in ages. Nucl. Tracks. Rad at. Meas. 17, 207–214.

    Article  Google Scholar 

  • Galbraith R.F. and Green P.F. (1990): Estimating the component ages in a finite mixture. Nucl. Tracks. Radiat. Meas. 17, 197–206.

    Article  Google Scholar 

  • Glasmacher U. (1994): Variscan and Postvariscan fluid systems and thermal history in the northern part of the Linksrheinisches Schiefergebirge. J. of the Czech Geol. Soc. (abst. vol.), 39, 37–38.

    Google Scholar 

  • Glasmacher U. (1995): Variszische und postvariszische Fluidsysteme, In: KW-relevante Eigenschaften potentieller Mutter-und Speichergesteine am Nordrand des Linksrheinischen Schiefergebirges: (eds. Walter R., Glasmacher U. & Wolf M. ). V, pp. 1–41.

    Google Scholar 

  • Gleadow A.J.W. & Duddy I.R. (1981): A natural long term track annealing experiment for apatite. Nucl. Tracks Radiat. Meas. 5, 169–174.

    Google Scholar 

  • Gleadow A.J.W., Duddy I.R., Green P.F. & Lovering J.F. (1986): Confined fission tracks lengths in apatite: a diagnostic tool for thermal history analysis. Contrib. Mineral. Petrol. 94, 405–415.

    Article  Google Scholar 

  • Gleadow A.J.W., Foster D.A. and Galbraith R.F. (1996): Fission track dating of apatites from a mid-oceanic continental fragment: The Seychelles Islands in the Indian Ocean. Int. Workshop on Fission Track Dating (abstr. vol.), 41.

    Google Scholar 

  • Green P.F. (1989): Thermal and tectonic history of the East Midlands shelf (onshore UK) and surrounding regions assessed by apatite fission track analysis. J. Geol. Soc. Lon. 146, 755–773.

    Article  Google Scholar 

  • Green P.F. (1996): The importance of compositional influence on fission track annealing in apatite, Int. Workshop on Fission Track Dating (abstr. vol.), 43.

    Google Scholar 

  • Green P.F., Duddy I.R., Gleadow A.J.W., Tingate P.R. & Laslett G.M. (1986): Thermal anneling of fission tracks in apatite: 1. A quantitative description. Chem. Geol. (Isot. Geosci. Sect.) 59, 237–253.

    Article  Google Scholar 

  • Green P.F., Duddy I.R., Lovering J.F. (1988): Can fission track annealing in apatite be described by first-order kinetics? Earth Planet. Sci. Lett. 87, 216–228.

    Article  Google Scholar 

  • Green P.F., Duddy I.R., Gleadow A.J.W. & Lovering J.F. (1989a): Apatite fission-track analysis exploration. In: Thermal History of Sedimentary Basins: methods and case histories (eds. Naeser N.D. & McCulloh Th.H.), pp. 181–195.

    Google Scholar 

  • Green P.F., Duddy I.R., Laslett G.M., Hegarty K.A., Gleadow A.J.W. & Lovering J.F. (1989b): Thermal annealing of fission tracks in apatite: 4. Quantitative modelling techniques and extension to geological timescales. Chem. Geol. (Iso. Geos. Sec.) 79, 155–182.

    Article  Google Scholar 

  • Grist A.M. and Ravenhurst C.E. (1992a): Mineral Separation Techniques used at Dalhousie University. In: Short Course on low temperature thermochronology (Zentilli M. and Reynolds P.H.), Min. Ass. Can. Short Course V 20, Appendix 2, pp. 203–209.

    Google Scholar 

  • Grist A.M. and Ravenhurst C.E. (1992b): A Step-By-Step Laboratory guide to fission track thermochronology at Dalhousie University. In: Short Course on low temperature thermochronology (Zentilli M. and Reynolds P.H.), Min. Ass. Can. Short Course V 20, Appendix 1, pp. 190–201.

    Google Scholar 

  • Hagedorn B., Lippolt H.J. & Wemicke R. (1991): Untersuchungen zur Isotopensystematik von Hämatit und Adular–Geochronologische Fallstudie Harz, In: DFG-Schwerpunktprogramm Intraformationale Lagerstättenbildung, (ed. Friedrich G.), Report 2, pp. 355–366.

    Google Scholar 

  • Heinen V. (1996): Simulation der präorogenen devonisch-unterkarbonischen Beckenentwicklung und Krustenstruktur im Linksrheinischen Schiefergebirge, Aachener Geowiss. Beitr., 15, 161 p.

    Google Scholar 

  • Hurford A.J. & Green P.F. (1982): A user’s guide to fission track dating calibration. Earth Planet. Sci. Lett. 59: 343–354.

    Article  Google Scholar 

  • Hurford A.J. & Green P.F. (1983): The zeta age calibration of fission track dating. Chem. Geol. 1, 285–317.

    Article  Google Scholar 

  • Hurford A.J., Fitch F.J. and Clarke A. (1984): Resolution of the age structure of the detrital zircon populations of two Lower Cretaceous sandstones from the Weald of England by fission track dating. Geol. Mag. 121, 269–277.

    Article  Google Scholar 

  • Issler A.R. (1996): An inverse model for extracting thermal histories from apatite fission track data: Instructions and software for the Windows 95 Environment. GSC Open File 2325, 84 p.

    Google Scholar 

  • James K. and Durrani S.A. (1986): The effect of crystal composition on Fission-Track annealing and closure temperatures in geological minerals: Implications for the cooling rates of terrestrial and extraterrestrial rocks. Nucl. Tracks. Radial. Meas. 11, 277–282.

    Article  Google Scholar 

  • Kohn B.P. and Foster D.A. (1996): Exceptional apatite chlorine variation in the Stillwater complex, Montana: Thermochronological consequences. Int. Workshop on Fission Track Dating (abstr. vol.), 67.

    Google Scholar 

  • Kramm U. (1982): Die Metamorphose des Stavelot-Venn Massivs, nordwestliches Rheinisches Schiefergebirge: Grad, Alter und Ursachen, Decheniana 135, 121–178.

    Google Scholar 

  • Kramm U. and Buhl D. (1985): U-Pb Zircon Dating of the Hill Tonalite, Venn-Stavelot Massif, Ardennes, N. lb. Geol. Paläont. Abh. 171, 329–337.

    Google Scholar 

  • Kramm U., Spaeth G. and Wolf M. (1985a): Variscan Metamorphism in the NE Stavelot-Venn Massif, Ardennes: A New Approach to the Question of Regional Dynamothermal or Contact Metamorphism, N. Jb. Geol. Paläont. Abh. 171, 311–327.

    Google Scholar 

  • Kramm U., Buhl D. and Chernyshev I.V. (1985b): Caledonian or Variscan Metamorphism in the Venn-Stavelot Massif, Ardennes? Arguments from a K-Ar and Rb-Sr Study, N. Jb. Geol. Paläont. Abh. 171, 339–349.

    Google Scholar 

  • Laslett G.M., Green P.F., Duddy I.R. and Gleadow A.J.W. (1987): Thermal annealing of fission tracks in apatite 2. A quantitative analysis, Chem. Geol. (Iso. Geos. Sec.) 65, 1–13.

    Article  Google Scholar 

  • Mader D. (1982): Sedimentologie und Genese des Bundsandsteins in der Eifel, Z. dt. geol. Ges., 133, 257–307.

    Google Scholar 

  • Maillieux E. (1931): Remarques sur les galets dévoniens du Poudingue de Malmédy, Bull. Mus. Roy. Hist. Nat. Belg. 7, 1–15.

    Google Scholar 

  • Meyer W., Albers H.J., Berners H.P., v. Gehlen K., Glatthaar D., Löhnertz W., Pfeffer K.H., Schnütgen A., Wienecke K. and Zakosek H. (1983): Pre-Quaternary Uplift in the Central Part of the Rhenish Massif, In: Plateau Uplift (eds. Fuchs K. et al.), pp. 39–46.

    Google Scholar 

  • Muchez Ph., Slobodnik M., Viane W.A. and Keppens E. (1995): Geochemical constraints on the origin and migration of paleofluids at the northern margin of the Variscan foreland, southern Belgium, Sed. Geol. 96, 191–200.

    Article  Google Scholar 

  • Murawski H., Albers H.J., Bender P., Berners H.-P., Dürr St., Huckriede R., Kauffmann G., Kowalczyk G., Meiburg P., Müller R., Muller A., Ritzkowski S., Schwab K., Semmel A., Stapf K., Walter R., Winter K.-P. and Zankl H. (1983): Regional tectonic setting and geological structure of the Rhenish Massif. In: Plateau Uplift (eds. Fuchs K. et al.), pp. 9–38.

    Google Scholar 

  • Pommerening J. (1993): Hydrogeologie, Hydrogeochemie und Genese der Aachener Thermalquellen, Mitt. Ing.- u. Hydrogeol. 50, 168 p.

    Google Scholar 

  • Plum H. (1989): Genetische Klassifikation und geochemische Interpretation der Mineral-und Thermalwässer der Eifel und Ardennen, Mitt. Ing.- u. Hydrogeol. 34, 170 p.

    Google Scholar 

  • Redecke P. (1992): Zur Geochemie und Genese variszischer und postvariszischer Buntmetallmineralisation in der Nordeifel und der Niederrheinischen Bucht, Mitt. Min. Lag. 41, 152 p.

    Google Scholar 

  • Rottke W. (1996): Zur Diagenese devonischer und unterkarbonischer Karbonatgesteine am Nordrand des Linksrheinischen Schiefergebirges, Aachener Geowiss. Beitr. 12, 152 p.

    Google Scholar 

  • Stormer J.C., Pierson M.L. and Tacker R.C. (1993): Variation of F and Cl X-ray intensity due to anisotropic diffusion in apatite during electron microprobe analysis. Am. Min. 78, 641–648.

    Google Scholar 

  • Stroink L. (1993): Zur Diagenese paläozoischer Sandsteine am Nordrand des Linksrheinisch-Ardennischen Schiefergebirges, Aachener Geowiss. Beitr. 1, 206 p.

    Google Scholar 

  • Spaeth G., Fielitz W. and Frank B. (1985): Caledonian Deformation and Very Low-Grade Metamorphism in the Northeastern Part of the Stavelot-Venn Massif, N. Jb. Geol. Paläont. Abh. 171, 297–310.

    Google Scholar 

  • Tschernoster R., Glasmacher U., Spaeth G. & Clauer N. (1995): K-Ar-Datierungen zur Abkühlungsgeschichte ausgewählter Magmatite und Metapelite aus dem Stavelot Venn Massiv, In: KW-relevante Eigenschaften potentieller Mutter-und Speichergesteine am Nordrand des Linksrheinischen Schiefergebirges: (eds. Walter R. Glasmacher U. & Wolf M.) IV, pp. 1–20.

    Google Scholar 

  • Vercoutere C. & Haute v. d. P. (1993): Post-Palaeozoic cooling and uplift of the Brabant Massif as revealed by apatite fission track analysis, Geol. Mag. 130, 639–646.

    Article  Google Scholar 

  • Van Den Haute P. and Vercoutere C. (1990): Apatite fission-track evidence for a mesozoic uplift of the Brabant Massif: Preliminary results, Ann. Soc. Géol. Belg. 112, 443–452.

    Google Scholar 

  • von Winterfeld C. & Walter R. (1993): Die variszische Deformationsfront des nordwestlichen Rheinischen Schiefergebirges–Ein bilanziertes geologisches Tiefenprofil über die Nordeifel, N. Jb. Geol. Paläont. Mh. 5, 305–320.

    Google Scholar 

  • Wagner G.A. (1968): Fission track dating of apatites, Earth and Planetary Letters 4, 411–415.

    Article  Google Scholar 

  • Wagner G.A. and Van den Haute (1992): Fission-track dating. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Walter R. (1992): Geologie von Mitteleuropa, E. Schweizerbart’sche Verlagsbuchhandlung, Stuttgart. Wellens M. (1995): Charakterisierung der organischen Substanz in den potentiellen Muttergesteinen, In: KW-relevante Eigenschaften potentieller Mutter-und Speichergesteine am Nordrand des Linksrheinischen Schiefergebirges: (eds. Walter R., Glasmacher U. & Wolf M.). II, pp. 1–64.

    Google Scholar 

  • Willett S.D. (1992): Modelling thermal annealing of fission tracks in apatite, In: Short Course on low temperature thermochronology (Zentilli M. and Reynolds P.H.), Min. Ass. Can. Short Course V 20, Appendix 1, pp. 190–201.

    Google Scholar 

  • Ziegler P.A. (1988): Evolution of the Arctic-North Atlantic and the Western Tethys. APPG Mem. 43, 1–198.

    Google Scholar 

  • Ziegler PA. (1990): Geological Atlas of Western and Central Europe-2nd ed., Shell Internationale Petroleum Maatschappij B.V., Geol. Soc. Lond., Elsevier, Amsterdam.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Glasmacher, U., Zentilli, M., Grist, A.M. (1998). Apatite Fission Track Thermochronology of Paleozoic Sandstones and the Hill-Intrusion, Northern Linksrheinisches Schiefergebirge, Germany. In: van den Haute, P., de Corte, F. (eds) Advances in Fission-Track Geochronology. Solid Earth Sciences Library, vol 10. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9133-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9133-1_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4977-3

  • Online ISBN: 978-94-015-9133-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics