Skip to main content

Elementary Reactions and Kinetic Modeling of the Oxidative Coupling of Methane

  • Chapter
Methane Conversion by Oxidative Processes

Abstract

The oxidative coupling of methane is typically carried out at temperatures of 650–950°C, using a methane-rich mixture of methane and oxygen or air, and with an oxidic catalyst of low porosity. The process is very complex in the sense that reactions at the surface of the catalyst strongly interfere with reactions in the homogeneous gas phase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Allbright, L.F., B.L. Crynes, and W.H. Corcoran. 1983. Pyrolysis, Theory and Industrial Practice. New York: Academic Press.

    Google Scholar 

  • Baulch, D.L., D.D. Drysdale, D.G. Home, and A.C. Lloyd. 1972. Elevated Kinetic Data for High Temperature Reactions. London: Butterworths.

    Google Scholar 

  • Baerns, M., K. van der Wiele, and J.R.H. Ross. 1990. Proceedings second European workshop on methane activation, 22–23 May 1989, Enschede, The Netherlands. Catal. Today 6 (4): 373–613.

    Google Scholar 

  • Biloen, P., J.N. Nelle, and F.G.A. van den Berg. 1983. J. Catal. 81: 450–63.

    Article  CAS  Google Scholar 

  • Cant, N.W., C.A. Lukey, P.F. Nelson, and R.J. Taylor. 1988. The rate determining step in the oxidative coupling of methane over a lithium-promoted magnesium oxide catalyst. J. Chem. Soc., Chem. Commun. 766.

    Google Scholar 

  • Dagaut, P., M. Cathonnet, and J.C. Boettner, 1988. Experimental study and kinetic modelling of propane oxidation in a jet stirred flow reactor. J. Phys. Chem. 661–71.

    Google Scholar 

  • Elbers, J. 1989. Personal communication. AKZO Salt Basic Chemistry, Hengelo, The Netherlands.

    Google Scholar 

  • Forlani, O., M. Lupieri, V. Picoli, S. Rossini, D. Sanfelippo, J.A. Dumesic, L.A. Aparicio, J.A. Rekoske, and A.A. Trevino. 1990. Stud. Surf. Sci. Catal. 55: 343.

    Article  Google Scholar 

  • Gardiner, W.C. 1984. Combustion Chemistry, pp. 197–360. New York: Springer-Verlag.

    Book  Google Scholar 

  • Geerts, J.W.M.H. 1990. Ethylene synthesis by direct partial oxidation of methane. Ph.D. Thesis, Eindhoven University of Technology, Eindhoven, The Netherlands.

    Google Scholar 

  • Geerts, J.W.M.H., Q. Chen, J.M.N. van Kasteren_ and K. van der Wiele. 1990. Thermodynamics and kinetic modelling of the homogeneous gas phase reactions of the oxidative coupling of methane. Catal. Today 6: 519–26.

    Article  CAS  Google Scholar 

  • Geerts. J.W.M.H., J.M.N. van Kasteren, and K. van der Wide. 1988. A mechanistic study on the oxidative coupling of methane over lithium doped magnesium oxide catalysts, Proceedings of the EC. Congress: “Hydrocarbons: Source of energy,” ed. G. Imarisio, M. Frias, and J.M. Bemtgen, Lyon, France, Sept. 1988, 434–40.

    Google Scholar 

  • Gesser, H.D., N.R. Hunter, and C.B. Prakash. 1985. The direct conversion of methane to methanol by controlled oxidation. Chem. Rev. 85 (4): 235–44.

    Article  CAS  Google Scholar 

  • Golden, D.M., and S.W. Benson. 1969. Chem. Rev. 69: 125.

    Article  CAS  Google Scholar 

  • Happel, J., E. Walter, and Y. Lecourtier. 1990. Modeling transient tracer studies in plug flow reactors. J. Catal. 123: 12–20.

    Article  CAS  Google Scholar 

  • Hinsen, W., and M. Baerns. 1983. Oxidatif Kupplung von Methan zu C2-Kohlenwasserstoffen in Gegenwart unterschiedlicher Katalysatoren. Chem.-Ztg. 107 (7/8): 223–6.

    CAS  Google Scholar 

  • Hinsen, W., W. Bytyn, and M. Baerns. 1984. Oxidative dehydrogenation and coupling of methane. In Proceedings of the 8th International Congress on Catalysis (ICC), Berlin, Vol. 3, pp. 581–91.

    Google Scholar 

  • Ito, T., J.-X. Wang, C.H. Lin, and J.H. Lunsford. 1985. Oxidative coupling of methane over a lithium-promoted magnesium oxide catalyst. J. Am. Chem. Soc. 107: 5062–8.

    Article  CAS  Google Scholar 

  • Iwamatsu, E., and K. Aika. 1989. Kinetic analysis of the oxidative coupling of methane over Na+-doped MgO. J. Catal. 117: 416–31.

    Article  CAS  Google Scholar 

  • Iwamatsu, E., T. Moriyama, N. Takasaki, and K. Aika. 1988. Oxidative coupling of methane over Na+- and Rb+-doped MgO catalysts. J. Catal. 113: 25–35.

    Article  CAS  Google Scholar 

  • Jones, L.A., J.J. Leonard, and J.A. Sofranko. 1984. US Patent, nos. 4443644 to 4443649 and no. 4444984.

    Google Scholar 

  • Keller, G.E., and M.M. Bhasin. 1982. Synthesis of ethylene via oxidative coupling of methane. J. Catal. 73: 9–19.

    Article  CAS  Google Scholar 

  • Kolts, J.H., and J.H. Lunsford. 1986. European Patent 0196541.

    Google Scholar 

  • Korf, S.J. 1990. Catalysts for the oxidative coupling of methane, Ph.D. Thesis, University of Twente, Enschede, The Netherlands.

    Google Scholar 

  • Korf, S.J., J.A. Roos, N.A. De Bruin, J.G. Ommen, and J.R.H. Ross. 1987. Influence of CO2 on the oxidative coupling of methane over lithium promoted magnesium oxide catalyst. J. Chem. Soc., Chem. Commun. 1433–4.

    Google Scholar 

  • Lee, J.S., and S.T. Oyama. 1988. Oxidative coupling of methane to higher hydrocarbons. Catal. Rev.-Sci. Eng. 30 (2): 249–80.

    Article  CAS  Google Scholar 

  • Marquardt, D.W. 1963. J. Soc. Indust. Appl. Math. 11 (2): 431–41.

    Article  Google Scholar 

  • McCarthy, J.G., A.B. McEwen, and M.A. Quinlan. 1990. Models of the direct catalytic partial oxidation of light alkanes. Stud. Surf. Sci. Catal. 55: 405–15.

    Article  Google Scholar 

  • Mimoun, H., A. Robine, S. Bonnaudet, and C.J. Cameron. 1990. Oxypyrolysis of natural gas, Appl. Catal. 58: 269–80.

    Article  CAS  Google Scholar 

  • Miro, E.E., Z. Kalenik, J. Santamaria, and E.E. Wolf. 1990. Transient studies on methane oxidative coupling over alkali-metal promoted titanate catalysts. Catal. Today 6: 511–18.

    Article  CAS  Google Scholar 

  • Nicholas, J. 1976. Chemical Kinetics: A Modem Survey of Gas Reactions. London: Harper Row Ltd.

    Google Scholar 

  • Nishiyama, T., T. Watanabe, and K. Aika. 1990. Oxidative coupling of methane over CaO catalysts promoted with alkali and alkaline earth oxide. Catal. Today 6: 391–7.

    Article  CAS  Google Scholar 

  • Otsuka, K., and K. Jinno. 1986. Kinetic studies on partial oxidation of methane over Sm203. Inorg. Chim. Acta 121: 237–41.

    Article  CAS  Google Scholar 

  • Otsuka, K., K. Jinno, and A. Morikawa. 1985. The catalysts active and selective in oxidative coupling of methane. Chem. Lett. 499–500.

    Google Scholar 

  • Otsuka, K., Q. Liu, M. Hatano, and A. Morikawa. 1986. Synthesis of ethylene by partial oxidation of methane over the oxides of transition elements with LiCI. Chem. Lett. 903–6.

    Google Scholar 

  • Peil, K.P., J.G. Goodwin, Jr., and G. Marcelin. 1989. J. Phys. Chem. 63: 5977–9.

    Article  Google Scholar 

  • Rotzoll, G. 1986. Mass spectrometric investigation and computer modeling of CH4–02–03 reactions from 480 to 830 K. J. Phys. Chem. 661 – 71.

    Google Scholar 

  • Tsang, W., and R.F. Hampson. 1986. Chemical kinetic data base for combustion chemistry. Part 1, Methane and related compounds. J. Phys. Chem. Ref. Data 1087–279.

    Google Scholar 

  • van Kasteren, J.M.N. 1990. Oxidative coupling of methane over lithium promoted magnesia. Ph.D. Thesis. Eindhoven University of Technology, Eindhoven, The Nethlands.

    Google Scholar 

  • van Kasteren, J.M.N., J.W.M.H. Geerts, and K. van der Wiele. 1988. Ethylene synthesis by catalytic oxidation of methane over Li-doped MgO catalysts: The interaction of catalytic and non-catalytic reaction steps. In Proceedings of the 9th International Congress on Catalysis, Calgary, Alberta, Canada, Vol. 2; ed. M.J. Phillips and M. Ternan, pp. 930–6. Ottawa: Chemical Institute of Canada.

    Google Scholar 

  • van Kasteren, J.M.N., J.W.M.H. Geerts, and K. van der Wiele. 1989. Working principle of Li doped MgO applied for the oxidative coupling of methane. Preprint First World Congress: “New Developments in Selective Oxidation,” Rimini, Italy, Sept. 18–22, 1989.

    Google Scholar 

  • van Kasteren, J.M.N., J.W.M.H. Geerts, and K. van der Wiele. 1990. The role of heterogeneous reaction steps during the oxidative coupling of methane over Li/MgO catalysts. Catal. Today 6: 497–502.

    Article  Google Scholar 

  • Van Santen, R.A., and C.P.M. De Groot. 1986. The mechanism of ethylene epoxidation. J. Catal. 98: 530–9.

    Article  Google Scholar 

  • Vardanyan, I.A., and A.B. Nalbandyan. 1985. On the mechansim of thermal oxidation of methane. Int. J. Chem. Kinet. 17: 901–24.

    Article  CAS  Google Scholar 

  • Warnatz, J. 1987. Hydrocarbon oxidation at high temperatures. Ber. Bunsen-Ges. Phys. Chem. 87: 1008–22.

    Article  Google Scholar 

  • Westley, F., and J.T. Herron. 1987. Compilation of kinetic data for combustion chemistry. Part 1: Nonaromatic C, H, O, N, and S containing compounds. US Government Printing Office.

    Google Scholar 

  • Zanthoff, H., and M. Baerns. 1990. Oxidative coupling of methane in the gas phase. Kinetic simulation and experimental verification. Ind. Eng. Chem. Res. 29: 1–10.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

E. E. Wolf

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

van der Wiele, K., Geerts, J.W.M.H., van Kasteren, J.M.N. (1992). Elementary Reactions and Kinetic Modeling of the Oxidative Coupling of Methane. In: Wolf, E.E. (eds) Methane Conversion by Oxidative Processes. Van Nostrand Reinhold Catalysis Series. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-7449-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-7449-5_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-015-7451-8

  • Online ISBN: 978-94-015-7449-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics