Skip to main content

Partial Oxidation of Methane over Metal Oxides: Reaction Mechanism and Active Oxygen Species

  • Chapter
Methane Conversion by Oxidative Processes

Part of the book series: Van Nostrand Reinhold Catalysis Series ((VNRCS))

Summary

A general picture of the mechanism of oxidative methane coupling over metal oxides has been proposed on the basis of kinetic and CH4-CD4 exchange studies on Sm2O3. The rate-determining step is the hydrogen abstraction from the methane activated on the surface. A diatomic oxygen species, probably O2 2−, is responsible for the abstraction of hydrogen. This active oxygen must be in equilibrium with the gaseous oxygen. Lattice oxygen atoms do not contribute to the oxidative coupling reaction. The main products in the ethanes formed in the reaction of the mixture of CH4, CD4, and O2 were CH3CH3, CH3CD3, and CD3CD3, indicating that the CH3. radical in the gas phase or the CH3 group on the surface is the reaction intermediate.

Calcination of the NiO added with LiNO3, Li(OH), or Li2CO3 at > 973 K generates a Li and NiO solid solution LixNi1−xO. The oxidative coupling of methane over this oxide is quite unusual. Lattice oxygen atoms of the oxide are responsible for the activation of methane. The rate of formation of C2 products depends on the square of methane pressure. The rate-determining reaction is the coupling step of the methyl groups adsorbed on Ni3+—O2− pair sites. The addition of LiCI to NiO, however, did not produce a compound oxide between Li and NiO. The reaction over this LiCl-added NiO can be explained in terms of the same reaction mechanism proposed for the reaction over Sm2O3.

Another example of the important role of lattice oxygen was observed for the partial oxidation of methane into formaldehyde over the mixed oxide of Fe, Nb, and B. The oxygen isotope analysis of the products from CH4 and 18O2 has indicated that the bulk oxygen of this oxide is preferentially incorporated into the products (HCHO, CO, CO2, and H2O).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Asami, K., T. Shikada, K. Fujimoto, and H. Tominaga. 1987. Oxidative coupling of methane over lead oxide catalyst: Kinetic study and reaction mechanism. Ind. Eng. Chem. Res. 26: 2348–53.

    Article  CAS  Google Scholar 

  • Baerns, M., J.R.H. Ross, and K. van der Wiele. 1988. Methane Activation. Amsterdam: Elsevier Science Publishers. (Catal. Today 4:271–494.)

    Google Scholar 

  • Cant, N.W., C.A. Lukey, P.F. Nelson, and R.J. Tyler. 1988. The rate controlling step in the oxidative coupling of methane over a lithium-promoted magnesium oxide catalyst. J. Chem. Soc. Chem. Commun. 766–8.

    Google Scholar 

  • Driscoll, D.J., W. Martir, J.-X. Wang, and J.H. Lunsford. 1985. Formation of gas-phase methyl radicals over MgO. J. Am. Chem. Soc. 107: 58–63.

    Article  CAS  Google Scholar 

  • Gesser, H.D., N.R. Hunter, and C.B. Prakash. 1985. The direct conversion of methane to methanol by controlled oxidation. Chem. Rev. 85: 235–44.

    Article  CAS  Google Scholar 

  • Hatano, M., and K. Otsuka. 1988. Alkali metal-doped transition metal oxides active for oxidative coupling of methane. Inorg. Chim. Acta 146: 243–7.

    Article  CAS  Google Scholar 

  • Hatano, M., and K. Otsuka, 1989. The oxidative coupling of methane on lithium nickelate(III). J. Chem. Soc. , Faraday Trans. 1 85: 199–206.

    Google Scholar 

  • Hutchings, G.J., M.S. Scurrell, and J.R. Woodhouse. 1987. The role of surface 0-in the selective oxidation of methane. J. Chem. Soc. , Chem. Commun. 1388–9.

    Google Scholar 

  • Hutchings, G.J., M.S. Scurrell, and J.R. Woodhouse. 1989. Oxidative coupling of methane using oxide catalyst. Chem. Soc. Rev. 18: 251–83.

    Article  CAS  Google Scholar 

  • Ito, T., J.-X. Wang, C.-H. Lin, and J.H. Lunsford. 1985. Oxidative dimerization of methane over a lithium-promoted magnesium oxide catalyst. J. Am. Chem. Soc. 107: 5062–8.

    Article  CAS  Google Scholar 

  • Jones, C.A., J.J. Leonard, and J.A. Sofranko. 1987a. The oxidative conversion of methane to higher hydrocarbons over alkali-promoted Mn/SiO2. J. Catal. 103: 311–19.

    Article  CAS  Google Scholar 

  • Jones, C.A., J.J. Leonard, and J.A. Sofranko. 1987b. Fuels for the future: Remote gas conversion. Energy and Fuels 1: 12–16.

    Article  CAS  Google Scholar 

  • Keller, G.E., and M.M. Bhasin. 1982. Synthesis of ethylene via oxidative coupling of methane. J. Catal. 73: 9–19.

    Article  CAS  Google Scholar 

  • Keulks, G.W., L.D. Krenzke, and T.M. Notermann. 1978. Selective oxidation of propylene. Adv. Catal. 27: 183–225.

    Article  CAS  Google Scholar 

  • Komatsu, T., T. Amaya, and K. Otsuka. 1989. LiC1 doped cobalt oxide is an active catalyst for the formation of ethylene in the oxidative coupling of methane. Catal. Leu. 3: 317–22.

    Article  CAS  Google Scholar 

  • Lee, J.S., and S.T. Oyama. 1988. Oxidative coupling of methane to higher hydrocarbons. Catal. Reu.-Sci. Eng. 30: 249–80.

    Article  CAS  Google Scholar 

  • Lin, C.-H., K.D. Campbell, J.-X. Wang, and J.H. Lunsford. 1986. Oxidative dimerization of methane over lanthanum oxide. J. Phys. Chem. 90: 534–7.

    Article  CAS  Google Scholar 

  • Liu, R.-S., M. Iwamoto, and J.H. Lunsford. 1982. Partial oxidation of methane by nitrous oxide over molybdenum oxide. J. Chem. Soc. , Chem. Commun. 78–9.

    Google Scholar 

  • Naccache, C. 1971. ESR study of species formed by reaction of O- adsorbed on magnesium oxide with O2, CO and ethylene. Chem. Phys. Lett. 11: 323–5.

    Article  CAS  Google Scholar 

  • Nelson, P.F., C.A. Lukey, and N.W. Cant. 1989. Measurements of kinetic isotope effects and hydrogen/deuterium distributions over methane oxidative coupling catalysts. J. Catal. 120: 216–30.

    Article  CAS  Google Scholar 

  • Otsuka, K. 1987. Direct conversion of methane to higher hydrocarbons. Sekiyu Gakkaishi 30: 385–96.

    Article  CAS  Google Scholar 

  • Otsuka, K., M. Hatano, and T. Komatsu. 1989. Synthesis of C2H4 by partial oxidation of CH4 over LiCI/NiO. Catal. Today 4: 409–19.

    Article  CAS  Google Scholar 

  • Otsuka, K., M. Inaida, Y. Wada, T. Komatsu, and A. Morikawa. 1989. Isotopic studies on oxidative methane coupling over samarium oxide. Chem. Lett. 1531–4.

    Google Scholar 

  • Otsuka, K., and K. Jinno. 1986. Kinetic studies on partial oxidation of methane over samarium oxides. Inorg. Chim. Acta 121: 237–41.

    Article  CAS  Google Scholar 

  • Otsuka, K., K. Jinno, and A. Morikawa. 1986. Active and selective catalysts for the synthesis of C2H4 and C2H6 via oxidative coupling of methane. J. Catal. 100: 353–9.

    Article  CAS  Google Scholar 

  • Otsuka, K., T. Komatsu, K. Jinno, Y. Uragami, and A. Morikawa. 1988. Activation of methane and synthesis of formaldehyde by partial oxidation. In Proceedings of the 9th International Congress on Catalysis, Vol. 2, ed. M.J. Phillips and M. Ternan, pp. 915–22. Ottawa: The Chemical Institute of Canada.

    Google Scholar 

  • Otsuka, K., Q. Liu, and A. Morikawa. 1986. Active and selective catalysts in oxidative coupling of methane. Nickel oxides with salts of alkali metals. Inorg. Chim. Acta 118: L23–4.

    Article  CAS  Google Scholar 

  • Otsuka, K., Y. Murakami, Y. Wada, A.A. Said, and A. Morikawa. 1990. Oxidative coupling of methane, ethane, and propane with sodium peroxide at low temperatures. J. Catal. 121: 122–30.

    Article  CAS  Google Scholar 

  • Otsuka, K., and T. Nakajima. 1987. Oxidative coupling of methane over samarium oxides using N2O as the oxidant. J. Chem. Soc., Faraday Trans. 1 83: 1315–21.

    Google Scholar 

  • Otsuka, K., A.A. Said, K. Jinno, and T. Komatsu. 1987. Peroxide anions as possible active species in oxidative coupling of methane. Chem. Lett. 77–80.

    Google Scholar 

  • Otsuka, K., Y. Shimizu, and T. Komatsu. 1987. Ba doped cerium oxides active for oxidative coupling of methane. Chem. Lett. 1835–8.

    Google Scholar 

  • Pitchai, R., and K. Klier. 1986. Partial oxidation of methane. Catal. Rev.—Sci. Eng. 28: 13–88.

    Article  CAS  Google Scholar 

  • Zhen, K.J., M.M. Khan, C.H. Mak, K.B. Lewis, and G.A. Somorjai. 1985. Partial oxidation of methane by nitrous oxide over molybdenum oxide. J. Catal. 94: 501–7.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

E. E. Wolf

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media New York

About this chapter

Cite this chapter

Otsuka, K., Hatano, M. (1992). Partial Oxidation of Methane over Metal Oxides: Reaction Mechanism and Active Oxygen Species. In: Wolf, E.E. (eds) Methane Conversion by Oxidative Processes. Van Nostrand Reinhold Catalysis Series. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-7449-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-7449-5_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-015-7451-8

  • Online ISBN: 978-94-015-7449-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics