Skip to main content

Wine Yeasts

  • Chapter
Yeast Technology

Abstract

Fermentations of fruits and fruit juices occur naturally and spontaneously without human intervention. Ripe berries can undergo spontaneous fermentation in the field if they are overripe or injured. Birds that eat such fermented berries can show all of the signs of alcohol intoxication and they may fly erratically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, A. M. 1953/1954. Studies on the storage of yeast. II. Wine yeast starter stored as moist yeast. Rept. Ontario Hort. Expt. Sta. and Production Lab. 98.

    Google Scholar 

  • Amerine, M. A., H. W. Berg, and W. V. Cruess. 1967. The Technology of Wine Making. AVI Publishing Co., Westport, Conn.

    Google Scholar 

  • Amerine, M. A., and G. Thoukis. 1958. The glucose-fructose ratio in California grapes. Vitis 1:224–229.

    Google Scholar 

  • Amerine, M. A., R. E. Kunkee, C. S. Ough, V. L. Singleton, and A. D. Webb. 1982. The Technology of Wine Making. AVI Publishing Co., Westport, Conn.

    Google Scholar 

  • Andreasen, A. A., and T. J. B. Stier. 1953. Anaerobic nutrition of S. cerevisiae. I. Ergosterol requirement for growth in a defined medium. J. Cell Comp. Physiol. 41:23–36.

    Article  Google Scholar 

  • Äyrapää, T. 1971. Biosynthetic formation of higher alcohols by yeasts. J. Inst. Brewing 77:266:276.

    Google Scholar 

  • Barillère, J. M., P. Bidan, and C. Dubois. 1983. Thermal resistance of yeasts and lactic acid bacteria isolated from wine (French). Bull, de l’OIV 56(627):327–351.

    Google Scholar 

  • Bartley, C., R. Beelman, K. Hicks, and G. Sapers. 1987. Ascorbyl decanoate — a potential new preservative to replace sulfur dioxide in wine (Abstract). Am. J. Enol. Vitic. 39(1):99, 1988.

    Google Scholar 

  • Beech, F. W., and J. G. Carr. 1977. Cider and perry. In Alcoholic Beverages, A. H. Rose (ed.). Academic Press, New York.

    Google Scholar 

  • Beelman, R. B., F. F. McArdle, and G. R. Duke. 1980. Comparison of L. oenos strains ML-34 and PSU 1 to induce malo-lactic fermentation in Pennsylvania red table wine. Am. J. Enol. Vitic. 31(3):269–276.

    Google Scholar 

  • Bell, A. A., C. S. Ough, and W. M. Kliewer. 1979. Effects of must and wine composition, rates of fermentation, and wine quality of nitrogen fertilization of Vitis vinifera var. Thompson Seedless grapevines. Am. J. Enol. Vitic. 30(2): 124–129.

    Google Scholar 

  • Benda, I. 1974. Schizosaccharomyces yeasts and their effect on acid reduction during vinification (French). Vignes Vin, No. Spec, Internat. Symp. Oenol., Arc Senans, 31–36, 1973.

    Google Scholar 

  • Benda, I. 1982. Wine and brandy. In Prescott and Dunn’s Industrial Microbiology, G. Reed (ed.). AVI Publishing Co., Westport, Conn.

    Google Scholar 

  • Benda, I. 1983. Botrycides, their active ingredients and formulation, in microbiological tests (German). Wein-Wiss. 38:41–50.

    Google Scholar 

  • Bergner, K. G. 1968. Amino acids in sparkling wines and their variation as a function of manufacturing procedures (French). Vigne Vin 41:450–467.

    Google Scholar 

  • Berti, L. A. 1981. Sparkling wine production in California. In Wine Production Technology in the United States, M. A. Amerine (ed.). American Chemical Society, Washington, D.C.

    Google Scholar 

  • Bertrand, A., M. O. Dubernet, and P. Ribéreau-Gayon. 1975. Trehalose, the principal disaccharide in wine (French). C. R. Acad. Sci. Paris 29(3):220.

    Google Scholar 

  • Bidan, P., and J. Maugenet. 1981. Recent information on use of active dry wine yeast (French). Bull de l’OIV 54(601):241–254.

    Google Scholar 

  • Bisson, J., J. Daulny, and A. Bertrand. 1980. Effect of fermentation temperature on the composition of white table wine (French). Conn. Vigne Vin 14:195–202.

    Google Scholar 

  • Blackwell, B., L. A. Mabbit, and W. Marley. 1969. Histamine and tyramine content of yeast products. J. Food Sci. 34:47–51.

    Article  Google Scholar 

  • Boulton, R. 1979. The heat transfer characteristics of wine fermentations. Am. J. Enol. Vitic. 30(2):152–156.

    Google Scholar 

  • Bréchot, P., J. Chauvet, P. Dupuy, M. Groson, and A. Rabatu. 1971. Oleanoic acid as anaerobic growth factor of wine yeasts (French). C. R. Acad. Sci. 272:890–893.

    Google Scholar 

  • Brusilovskii, S. A., A. I. Mel’nikov, A. A. Merzhanian, and N. G. Sarishvili. 1977. Production of Soviet Champagne in Continuous Culture (Russian). Pishchevia Promy’shlennost, Moscow.

    Google Scholar 

  • Cahill, J. T, P. A. Carroad, and R. E. Kunkee. 1980. Cultivation of yeast under carbon dioxide pressure for use in continuous sparkling wine production. Am. J. Enol. Vitic. 31(1):46–52.

    Google Scholar 

  • Castelli, T. 1954. The organisms responsible for wine fermentations (German). Arch. Mikrobiol. 20:323–342.

    Article  Google Scholar 

  • Castor, J. G. 1953. Experimental development of compressed yeast fermentation starters. Wines and Vines 34(8):27;

    Google Scholar 

  • Castor, J. G. 1953. Experimental development of compressed yeast fermentation starters. Wines and Vines 34(9):33.

    Google Scholar 

  • Conner, A. J. 1983. The comparative toxicity of vineyard pesticides to wine yeasts. Am. J. Enol. Vitic. 34(4):278–279.

    Google Scholar 

  • Cooke, G. M., and H. W. Berg. 1983. A re-examination of varietal table wine processing practices in California. I. Grape standards: grape and juice treatment and fermentation. Am. J. Enol Vitic. 34(4):249–259.

    Google Scholar 

  • Coulon, P., B. Duteurtre, M. Charpentier, A. Parenthoen, C. Badour, and J. P. Moulin. 1983. New perspectives in the methode champenoise: Use of immobilized yeast (French). Le Vigneron Champenois, France 11, pp. 516–532.

    Google Scholar 

  • Crapisi, A., M. P. Nuti, A. Zamorani, and P. Spettoli. 1987. Improved stability of immobilized Lactobacillus spec. cells for the control of malolactic fermentation in wine. Am. J. Enol. Vitic. 38(4):310–312.

    Google Scholar 

  • D’Amore, T., and G. G. Stewart. 1987. Ethanol tolerance of yeast. Enzyme Microb. Technol. 9(6):332–330.

    Google Scholar 

  • Davis, C. R., D.J. Wibowo, T. H. Lee, and G. H. Fleet. 1986. Growth and metabolism of lactic acid bacteria during and after malolactic fermentation of wines at different pH. Appl. Environ. Microbiol. 51(3):539–545.

    Google Scholar 

  • De Jong, D. W., A. King, Jr., and F. P. Boyle. 1968. Modification of white table wines with enzymes from Botrytis cineria Pers. Am. J. Enol. Vitic. 19:228–237.

    Google Scholar 

  • De Soto, R. T. 1955. Integrating yeast propagation with winery operation. Am. J. Enol. Vitic. 6:26–30.

    Google Scholar 

  • De Soto, R. T., and R. Huber. 1968. The effect of tannic acid on the secondary fermentation of champagne. Am. J. Enol. Vitic. 19:246–253.

    Google Scholar 

  • De Soto, R. T., M. S. Nightingale, and R. Huber. 1966. Production of natural sweet table wines with submerged culture of Botrytis cineria Pers. Am. J. Enol. Vitic. 17:191–202.

    Google Scholar 

  • De Wet, P., O. P. H. Augustyn, C. J. van Wyck, and W. A. Joubert. 1978. Odour thresholds and their application to wine flavour characteristics. Proc. S. Afr. Soc. Enol. Vitic., pp. 28–42.

    Google Scholar 

  • Dittrich, H. H. 1963. The alcoholic fermentation of L-malic acid by S. pombe var. acidodevoratus (German). Zentralbl. Bakteriol. Parasitenkd. Infektionskr., Hyg. Abt. 2 119:406–421.

    Google Scholar 

  • Dittrich, H. H. 1980. Effect of bacterial acid degraclition on wine composition (German). Wein-Wiss. 35:421–429.

    Google Scholar 

  • Dittrich, H. H. 1987. Microbiology of Wines (German). Verl. Ulmer, Stuttgart.

    Google Scholar 

  • Dittrich, H. H., and A. Barth. 1984. SO2 content, SO2 binding substances, and acid reduction in German wines (German). Wein-Wiss. 39(3): 184–200.

    Google Scholar 

  • Dittrich, H. H., and T. Staudenmayer. 1968. SO2 formation, formation of hydrogen sulfide odor and its removal (German). Dtsche. Wein-Ztg. 24:707–709.

    Google Scholar 

  • Domercq, S. 1957. Classification of wine grapes in the Gironde (French). Ann. Technol. Agric. 6:5–58, 139–183.

    Google Scholar 

  • Edwards, C. G., and R. B. Beelman. 1987. Inhibition of the malolactic bacterium, L. oenos (PSU-1), by decanoic acid and subsequent removal of the inhibition by yeast ghosts. Am. J. Enol. Vitic. 38(3):239–242.

    Google Scholar 

  • Egamberdiev, N. B. 1967. Study of the must fermentation by Saccharomyces vini yeast during continuous culture (Russian). Prikl. Biokhim, Mikrobiol. 3:458–463.

    Google Scholar 

  • Fatichenti, F., G. A. Farris, and P. Deiana. 1983. Improved production of Spanish-type sherry by using selected indigenous film-forming yeasts as starters. Am. J. Enol Vitic. 34(4):216–220.

    Google Scholar 

  • Feuillat, M. 1980. Aging of champagne on the yeasts; effect on the enrichment and development of the aroma of the wine (French). Rev. Franc. Oenol. 16(79):35–46.

    Google Scholar 

  • Feuillat, M., and C. Charpentier. 1982. Autolysis of yeasts in champagne. Am. J. Enol. Vitic. 33(1):6–13.

    Google Scholar 

  • Fiechter, A. 1963. Pilot plant for the continuous production of microorganisms (German). Chem. Ing.-Technik 34:696.

    Google Scholar 

  • Filipov, B. A. 1963. Production of enzyme concentrates and their use (Russian). Vinodelie Vinogradarstvo SSSR 23(2): 11–14.

    Google Scholar 

  • Fleet, G. H., S. Lafon-Lafourcade, and P. Ribéreau-Gayon. 1984. Evolution of yeasts and lactic acid bacteria during fermentation and storage of Bordeaux wines. Appl. Environ. Microbiol. 48(5): 1034–1038.

    Google Scholar 

  • Fumi, M. D., G. Triloli, M. G. Colombi, and O. Colagrande. 1988. Immobilization of Saccharomyces cerevisiae in calcium alginate gel and its application to bottle-fermented sparkling wine production. Am. J. Enol. Vitic. 39(4):267–272.

    Google Scholar 

  • Gallander, J. F. 1982. Influence of different wine yeasts on the quality of Vidal blanc wines. Dev. Ind. Microbiol. 23:123–129.

    Google Scholar 

  • Gnaegi, F., et al. 1984. The bacteriophages of Leuconostoc oenos and progress in the mastery of the malolactic fermentation of wines (French). Rev. Suisse Vitic, Arboric, Hortic. 16(2):59–65.

    Google Scholar 

  • Goldman, M. 1963. Factors influencing the rate of carbon dioxide formation in fermented-in-the bottle champagne. Am. J. Enol. Vitic. 14:36–42.

    Google Scholar 

  • Goswell, R. W. 1987. Microbiology of fortified wines. In Developments in Food Microbiology, vol. 2, R. K. Robinson (ed.). Elsevier Appl. Sci. Publ., New York.

    Google Scholar 

  • Grassin, C. 1987. Extracellular enzymes excreted by Botrytis cineria into must. Enological and phytopathological applications (French). Ph.D. thesis, Enological Institute, University of Bordeaux, France.

    Google Scholar 

  • Groat, M. and C. S. Ough. 1987. Effects of insoluble solids added to clarified musts on fermentation rate, wine composition and wine quality. Am. J. Enol. Vitic. 29(2): 112–119.

    Google Scholar 

  • Guijarro, J. M., and R. Lagunas. 1984. Saccharomyces cerevisiae does not accumulate ethanol against a concentration gradient. J. Bacteriol. 160(3):874–878.

    Google Scholar 

  • Guymon, J. F, and J. E. Heitz. 1952. The fusel oil content of California wines. Food Technol. 6:359–362.

    Google Scholar 

  • Hara, S., Y. Iimura, and K. Otsuka. 1980. Breeding of useful killer wine yeasts. Am. J. Enol. Vitic. 31(1):28–33.

    Google Scholar 

  • Haubs, H., H. Muller-Spath, and T. Loescher. 1974. The effect of carbon dioxide on wine (German). Dt. Weinbau 29:930–934.

    Google Scholar 

  • Heard, G. M., and G. H. Fleet. 1985. Growth of natural yeast flora during the fermentation of inoculated wines. Appl. Environ. Microbiol. 50(3):727–728.

    Google Scholar 

  • Henick-Kling, T., T. H. Lee, and D. J. D. Nicholas. 1986. Inhibition of bacterial growth and malolactic fermentation in wine by bacteriophage. J. Appl Bacteriol. 61:287–293.

    Article  Google Scholar 

  • Heresztyn, T. 1986. Formation of substituted tetrahydropyridines by species of Brettanomyces and Lactobacillus isolated from mousy wines. Am. J. Enol. Vitic. 37(2): 127–132.

    Google Scholar 

  • Hernandez, M. R. 1964. Production of H2S by wine yeasts grown with several sulfur containing compounds (Spanish). Semana Vitivinicola 19:2359–2360.

    Google Scholar 

  • Ingledew, W. N., and R. E. Kunkee. 1985. Factors influencing sluggish fermentations of grape juice. Am. J. Enol. Vitic. 36(1):65–76.

    Google Scholar 

  • Ingledew, W. M., C. A. Magnus, and F. W. Sosulski. 1987. Influence of oxygen on proline utilization during the wine fermentation. Am.J. Enol Vitic. 38(3):246–248.

    Google Scholar 

  • Jacobson, G. K. 1985. Eliminating undesirable yeast strains with killer yeasts. Eastern Grape Grower and Winery News, Aug./Sept. pp. 29–31.

    Google Scholar 

  • Jones, R. S., and C. S. Ough. 1985. Variations in the percent ethanol (v/v) per °Brix conversions of wines from different climatic regions. Am. J. Enol. Vitic. 36(4):268–270.

    Google Scholar 

  • Killian, E., and C. S. Ough. 1979. Fermentation esters — formation and retention as affected by fermentation temperatureAm. J. Enol. Vitic. 30(4):301–305.

    Google Scholar 

  • King, S. W. 1985. Recent developments of industrial malolactic starter cultures for the wine industry. Dev. Ind. Microbiol. 26:311–321.

    Google Scholar 

  • King, S. W., and R. B. Beelman. 1986. Metabolic interactions between Saccharomyces cerevisiae and Leuconostoc oenos in a model grape juice/wine system. Am.J. Enol. Vitic. 37(1):53–60.

    Google Scholar 

  • Klein, J. K. 1981. Wine production in Washington state. In Wine Production Technology in the United States, M. A. Amerine (ed.). American Chemical Society, Washington, D.C.

    Google Scholar 

  • Knappstein, A. T., and B. C. Rankine. 1970. Commercial application of pure yeast in wine making and its influence on wine quality. Austral. Wine, Brew., Spirit Rev. 89(3):52–54.

    Google Scholar 

  • Kockova-Kratochvilova, A. 1981. Characteristics of industrial microorganisms. Biotechnology, vol. 5, H. J. Rehm and G. Reed (eds.). VCH Publishing Company, New York.

    Google Scholar 

  • Kraus, J. K., G. Reed, and J. C. Villettaz. 1983/1984. Active dry wine yeasts (French). Conn. Vigne Vin 17(2):93–103;

    Google Scholar 

  • Kraus, J. K., G. Reed, and J. C. Villettaz. 1983/1984. Active dry wine yeasts (French). Conn. Vigne Vin 18(1):1–26.

    Google Scholar 

  • Kraus, J. K., R. Scopp, and S. L. Chen. 1981. Effect of rehydration on dry wine yeast activity. Am. J. Enol. Vitic. 32(2):132–134.

    Google Scholar 

  • Kreger van Rij, N. J. W. 1984. The Yeasts: A Taxonomic Study, 3rd. ed. Elsevier, Amsterdam.

    Google Scholar 

  • Kung, S., G. F. Russell, B. Stackler, and A. D. Webb. 1980. Concentration changes in some volatiles through six stages of a Spanish solera. Am. J. Enol. Vitic. 31(2): 187–191.

    Google Scholar 

  • Kunkee, R. E. 1975. A second enzymatic activity for decomposition of malic acid by malolactic bacteria. In Lactic Acid Bacteria in Beverages and Food, J. G. Carr, C. V. Cutting, and G. C. Whiting (eds.). Academic Press, New York.

    Google Scholar 

  • Kunkee, R. E., and M. A. Amerine. 1970. Yeasts in wine making. In The Yeasts, vol. 3, A. H. Rose and J. S. Harrison (eds.). Academic Press, New York.

    Google Scholar 

  • Kunkee, R. E., and R. W. Goswell. 1977. Table wines. In Economic Microbiology, vol. 1, A. H. Rose (ed.). Academic Press, New York.

    Google Scholar 

  • Kunkee, R. E., and C. S. Ough. 1966. Multiplication and fermentation of Saccharomyces cerevisiae under carbon dioxide pressure in wine. Appl. Microbiology 14:643–648.

    Google Scholar 

  • Kunkee, R. E., E. Bordeu, S. E. Kerns, and M. R. Vilas. 1987. Brandy production with decreased fusel oil (higher alcohol) content by use of a leucine-less yeast mutant for fermentation. Abstr. Am. Soc. Enol Vitic, Ann. Meeting, June, Anaheim, Calif. Lafon-Lafourcade, S. 1983. Wine and brandy. In Biotechnology vol. 5., H.J. Rehm and G. Reed (eds.). VCH Publishing Company, New York.

    Google Scholar 

  • Lafon-Lafourcade, S., C. Geneix, and P. Ribéreau-Gayon. 1984. Inhibition of the alcoholic fermentation of grape must by fatty acids produced by yeasts and their elimination by yeast ghosts. Appl. Environ. Microbiol. 47(6): 1246–1249.

    Google Scholar 

  • Lafon-Lafourcade, S., and P. Ribéreau-Gayon. 1984. Wine spoilage by acetic acid and lactic acid bacteria (French) Conn. Vigne Vin 18(1):67–82.

    Google Scholar 

  • Lafon-Lafourcade, S., F. Larue, P. Bréchot, and P. Ribéreau-Gayon. 1977. Steroids as survival factors for yeasts during the alcoholic fermentation of grape musts (French). C. R. Acad. Sci. 284:1938–1942.

    Google Scholar 

  • Laranidis, P., and S. Lafon-Lafourcade. 1982/1983. Alcohol yield based on sugar during the fermentation of grape must (French). Rapport des Activités et Recherches, Inst. d’Oenologie, Univ. de Bordeaux.

    Google Scholar 

  • Larue, F., C. Geneix, S. Lafon-Lafourcade, and P. Ribéreau-Gayon. 1985. First observations on the mode of action of yeast cell wall material (French). Conn. Vigne Vin 18:155–163.

    Google Scholar 

  • Larue, F., J. N. Murakami, Boidron, and L. Fohr. 1986. First observations on the use of octanoic and decanoic acids as substitutes for sulfur dioxide in the stabilization of sweet wines (French). Conn. Vigne Vin 20(2):87–95.

    Google Scholar 

  • Liu, J. R., and J. F. Gallander. 1983. Effect of pH and sulfur dioxide on the rate of fermentation in red table wines. Am. J. Enol. Vitic. 34(1):44–46.

    Google Scholar 

  • Long, Z. R. 1981. White table wine production in California’s North Coast region. In Wine Production Technology in the United States, M. A. Amerine (ed.). American Chemical Society, Washington, D.C.

    Google Scholar 

  • Lonvaud-Funel, A., C. Desens, and A. Joyeux. 1985. Stimulation of the malolactic fermentation by addition to the wine of yeast cell wall material or other adjuvants such as polysaccharides or nitrogenous materials (French). Conn. Vigne Vin 19(4):229–240.

    Google Scholar 

  • Lonvaud-Funel, A., and A. M. Strasser de Saad. 1982. Purification and properties of a malolactic enzyme from a strain of Leuconostoc mesenteroides isolated from grapes. Appl. Environ. Microbiol. 43:357–361.

    Google Scholar 

  • Luthi, J., and Ch. Schlater. 1983. Biogenic amines in foods. The effect of histamine, tryamine and phenylethylamine on humans (German) Z. Lebensm. Unters. u. Forsch. 177:439–443.

    Article  Google Scholar 

  • Malik, F., E. Minarik, and K. Kutlik. 1984. Fermentation activity of dry, pure-culture yeasts (German). Wein-Wissensch. 39(3): 178–183.

    Google Scholar 

  • Martinez de la Ossa, E., L. Perez, and I. Caro. 1987. Variations of the major volatiles through aging of sherry. Am. J. Enol. Vitic. 38(4):293–297.

    Google Scholar 

  • Martini, L. P. 1981. Red wine production in the coastal counties of California 1960–1980. In Wine Production in the United States, M. A. Amerine (ed.). American Chemical Society, Washington, D.C.

    Google Scholar 

  • Mascarenhas, M. A. 1984. The occurrence of malolactic fermentation and diacetyl contents of dry table wines from northeastern Portugal. Am. J. Enol. Vitic. 35(1):49–51.

    Google Scholar 

  • Masyczerk, R., and C. S. Ough. 1983. The red wine syndrome. Am. J. Enol. Vitic. 34(4):260–264.

    Google Scholar 

  • Mattick, L. R., and W. B. Robinson. 1960. Changes in the volatile acids during the baking of sherry wine by the Tressler process. Am. J. Enol. Vitic. 11:113–116.

    Google Scholar 

  • Mayer, K. 1974. Important microbiological and technological findings regarding the microbial reduction of acids (German). Schweiz. Z. Obst. u. Weinb. 110:385–391.

    Google Scholar 

  • Minarik, E. 1983. Activation of the alcoholic fermentation of musts rich in sugar (German). Die Wein-Wissensch. 38(3):202–209.

    Google Scholar 

  • Minarik, E., V. Kubalova, and Z. Silharova. 1986. Further knowledge on the influence of yeast starter amount and the activator of B. cineria on the course of fermentation under unfavorable conditions (Czech.). Kvasny Prumysl 32(3):58–61.

    Google Scholar 

  • Minarik, E., and A. Navara. 1986. Chemistry and Microbiology of Wine (Slovak). Priroda, Bratislava.

    Google Scholar 

  • Mooser, J. 1958. The occurrence of yeasts in bees, bumble bees and wasps (German). Zentralbl. Bakteriol. Parasitenk. u. Infektionskr. Hyg. Abt. 2 111:101–115.

    Google Scholar 

  • Mrak, E. M., and L. S. McClung. 1940. Yeasts occurring on grapes and in grape products in California.;. Bacteriol. 40:395–407.

    Google Scholar 

  • Nagodawithana, T. W., and J. M. Cuzner. 1979. Method of fermenting brewer’s wort. U.S. Patent 4,140,799, Feb. 20.

    Google Scholar 

  • Nagodawithana, T. W., and K. Steinkraus. 1976. Influence of the rate of ethanol production and accumulation on the viability of Saccharomyces cerevisiae in rapid fermentation. Appl. Environ. Microbiol. 31:158–162.

    Google Scholar 

  • Nagodawithana, T. W., J. T. Whitt, and A. J. Cutaia. 1977. Study of the feedback effect of ethanol on selected enzymes of the glycolytic pathway. J. Am. Soc. Brewing Chemists 35:179–183.

    Google Scholar 

  • Nelson, K. E., and M. A. Amerine. 1957. The use of Botrytis cineria Pers. in the production of sweet table wines. Hilgardia 26:521–563.

    Google Scholar 

  • Nelson, K. E., and M. S. Nightingale. 1959. Studies in the commercial production of natural sweet wines from botrytized grapes. Am. J. Enol. Vitic. 10:135–141.

    Google Scholar 

  • Nishino, H., S. Miyazaki, and K. Tohio. 1985. Effect of osmotic pressure on the growth rate and fermentation activity of wine yeasts. Am. J. Enol. Vitic. 36(2): 170–174.

    Google Scholar 

  • Novak, M., P. Strehaiano, M. Morena, and G. Goma. 1981. Alcoholic fermentation: On the inhibitory effect of ethanol. Biotechnol. Bioeng. 23:201–211.

    Article  Google Scholar 

  • Nykanen, L. 1986. Formation and occurrence of flavor compounds in wine and distilled alcoholic beverages. Am. J. Enol. Vitic. 37(1):84–96.

    Google Scholar 

  • Ough, C. S. 1964. Fermentation rates of grape juice. 1. Effects of temperature and composition on white juice fermentation rates. Am.J. Enol. Vitic. 15:167–177.

    Google Scholar 

  • Ough, C. S. 1966a. Fermentation rates of grape juice. II. Effect of initial °Brix, pH and fermentation temperature. Am.J. Enol. Vitic. 17:20–26.

    Google Scholar 

  • Ough, C. S. 1966b. Fermentation rates of grape juice. III. Effects of initial alcohol, pH, and fermentation temperature. Am. J. Enol. Vitic. 17:74–81.

    Google Scholar 

  • Ough, C. S., and H. W. Berg. 1969. Pressure fermentation of red wines. Am. J. Enol. Vitic. 20:118–119.

    Google Scholar 

  • Ough, C. S., E. A. Crowell, and B. R. Gutlove. 1988. Carbamyl compound reactions with ethanol. Am.J. Enol. Vitic. 39(3):239–243.

    Google Scholar 

  • Ough, C. S., E. A. Crowell, and L. A. Mooney. 1988. Formation of ethyl carbamate precursors during grape juice (Chardonnay) fermentation. Am. J. Enol. Vitic. 39(3):243–249.

    Google Scholar 

  • Parrish, M. E., and D. E. Carroll. 1985. Indigenous yeasts associated with Muscadine (Vitis rotundifolia) grapes and musts. Am.J. Enol. Vitic. 36(2): 165–169.

    Google Scholar 

  • Pascual, C., A. Alonso, I. Garia, C. Romay, and A. Kotyk. 1988. Effect of ethanol on glucose transport, key glycolytic enzymes, and proton extrusion in Saccharomyces cerevisiae. Biotechnol Bioeng. 32:374–378.

    Article  Google Scholar 

  • Peynaud, E., and S. Domercq. 1953. The yeasts of the Gironde (French). Ann.Inst. Natl. Rech. Agron. 4:265–300.

    Google Scholar 

  • Pichova, A., K. Beran, B. Behalova, and J. Zajicek. 1985. Ergosterol synthesis and population analysis of a fed-batch fermentation of Saccharomyces cerevisiae. Folia Microbiol. 30:134–140.

    Article  Google Scholar 

  • Piton, F., M. Charpentier, and D. Troton. 1988. Cell wall and lipid changes in Saccharomyces cerevisiae during aging of champagne wine. Am. J. Enol. Vitic. 39(3):221–226.

    Google Scholar 

  • Popper, K., F. S. Nury, W. M. Camirand, and W. N. Stanley. 1964. Development of Botrytis Character in Must by Aerated Submerged Culture. Wine Institute Technological Advisory Committee, Dec. 11.

    Google Scholar 

  • Posson, P. 1981. Production of baked and submerged culture sherry-type wines in California 1960–1980. In Wine Production Technology in the United States, M. A. Amerine (ed.). American Chemical Society, Washington, D.C.

    Google Scholar 

  • Postel, W., and U. Guvenc. 1976. Gas chromatographic determination of diacetyl, acetoin and 2,3 pentadione in wine (German). Z. Lebensm. Unters. u. Forsch. 161:35–44.

    Article  Google Scholar 

  • Postel, W., F. Drawert, and L. Adam. 1972. Gas chromatographic determination of beverage components. III (German). Chem. Mikrobiol. Technol. Lebensm. 1:224–235.

    Google Scholar 

  • Prasad, R., and A. H. Rose. 1986. Involvement of lipids in solute transport in yeasts. Yeast 2:205–220.

    Article  Google Scholar 

  • Radler, F. 1975. The metabolism of organic acids by lactic acid bacteria. In Lactic Acid Bacteria in Beverages and Food, J. G. Carr, C. V. Cutting, and G. C. Whiting (eds.). Academic Press, New York.

    Google Scholar 

  • Radier, F., K. Dietrich, and I. Schonig. 1985. Microbiological testing of active dry wine yeasts (German). Dt. Lebensm. Rundschau 81:73–77.

    Google Scholar 

  • Radler, F., and M. Schmitt. 1987. Killer toxins of yeasts: Inhibitors of fermentation and their adsorption. J. Food Protection 50:234–238.

    Google Scholar 

  • Radler, F., and H. Schütz. 1982. Glycerol production of various strains of Saccharomyces. Am. J. Enol. Vitic. 33(1):36–40.

    Google Scholar 

  • Rankine, B. C. 1967. Formation of higher alcohols by wine yeasts and relation to taste thresholds. J. Sci. Food Agric. 18:583–589.

    Article  Google Scholar 

  • Rankine, B. C., and B. Lloyd. 1963. Quantitative assessment of dominance of added yeast in wine fermentations. J. Sci. Food Agric. 14:793–798.

    Article  Google Scholar 

  • Rapp, A., M. Gunther, and J. Almy. 1985. Identification and significance of several sulfur-containing compounds in wine. Am. J. Enol. Vitic. 36(3):219–221.

    Google Scholar 

  • Reed, G. 1974. Comparison of the use of commercial yeasts. Proc. Biochem. 9(9):11–12, 32.

    Google Scholar 

  • Reed, G., and S. L. Chen. 1978. Evaluating commercial wine yeasts by fermentation activity. Am. J. Enol. Vitic. 29(3):165–168.

    Google Scholar 

  • Reed, G., and T. W. Nagodawithana. 1988. Technology of yeast usage in wine making. Am. J. Enol. Vitic. 39(1):83–90.

    Google Scholar 

  • Ribéreau-Gayon, P. 1985. New developments in wine microbiology. Am. J. Enol. Vitic. 36(1):1–10.

    Google Scholar 

  • Ribéreau-Gayon, J., E. Peynaud, P. Ribereau-Gayon, and P. Sudraud. 1976. Science and Technology of Wine (French). Dunod Edition, Paris.

    Google Scholar 

  • Ribéreau-Gayon, P., S. Lafon-Lafourcade, D. Dubourdieu, V. Lucmaret, and I. Larue. 1979.

    Google Scholar 

  • Metabolism of Saccharomyces cerevisiae in the must of Botrytis cineria infected grapes. Inhibition of the fermentation: Formation of acetic acid and glycerol (French). C. R. Acad. Sci. 289:441–444.

    Google Scholar 

  • Riddel, J. L., and M. S. Nury. 1958. Continuous fermentation of wine at Vie-Del. Wines and Vines 39(5):35.

    Google Scholar 

  • Rodriguez, S. B. 1987. A system for identifying spoilage yeast in packaged wine. Am. J. Enol. Vitic. 38(4):273–276.

    Google Scholar 

  • Romano, P., M. G. Soli, G. Suzzi, L. Grazia, and C. Zambonelli. 1985. Improvement of a wine Saccharomyces cerevisiae strain by a breeding program. Appl. Environ. Microbiol. 50(4): 1064–1067.

    Google Scholar 

  • Rossi, J., and F. Clementi. 1984. L-malic acid catabolism by Polyacrylamide entrapped Leuconostoc oenos. Am. J. Enol. Vitic. 35(2): 100–102.

    Google Scholar 

  • Rossini, G., M. Bertoluccioli, and E. R. Pasquale. 1981. Vinification with commercial active dry wine yeast: Vintage 1979 (Italian). Vini d’ltalia 130:21–26.

    Google Scholar 

  • Rous, C. V., and R. Snow. 1983. Reduction of higher alcohols by fermentation with a leucine auxotrophic mutant of wine yeast. J. Inst. Brew. 89:274–278.

    Google Scholar 

  • Rupela, O. P., and P. Tauro. 1984. Isolation and characterization of low hydrogen sulfide producing wine yeast. Enzyme Microbiol. Technol. 6:419–421.

    Article  Google Scholar 

  • Sa-Correia, I., and N. Van Uden. 1983. Temperature profiles of ethanol tolerance: Effects of ethanol on the minimum and maximum temperature for growth of Saccharomyces cerevisiae and Kluyveromyces fragilis. Biotech. Bioeng. 25:1665–1667.

    Article  Google Scholar 

  • Salo, P. 1970. Determining the odor threshold for some compounds in alcoholic beverages. J. Food Sci. 35:95–98.

    Article  Google Scholar 

  • Schmitt, A., K. Curshmann, and H. Koehler. 1979. On fermentation and the flavor defects of wines (German). Rebe Wine 32(9):364–367.

    Google Scholar 

  • Schmitt, A., K. Curshmann, A. Miltenberger, and A. Koehler. 1984. Active dry wine yeasts compared over several years (German). Der Deutsche Weinbau 25/26:1126–1138.

    Google Scholar 

  • Schreier, P. 1979. Flavor composition of wines. Crit. Rev. Food Sci. Nutr. 12:59–111.

    Article  Google Scholar 

  • Shimazu, Y., and M. Watanabe. 1981. Effects of yeast strains and environmental conditions on forming of organic acids in must during fermentation (Japanese). J. Ferm. Technol. 59:27–32.

    Google Scholar 

  • Sikovec, S. 1966. Effect of some polyphenols on the physiology of wine yeasts. II. Effect of polyphenols on propagation and respiration of yeasts (German). Mitt. Rebe Wein (Klosterneuburg) 16:227–281.

    Google Scholar 

  • Silver, J., and T. Leighton. 1981. Control of malolactic fermentations in wine. 2. Isolation and characterization of a new malolactic organism. Am. J. Enol. Vitic. 32(1):64–72.

    Google Scholar 

  • Skofis, E. 1981. Production of table wines in the interior valley (of California). In Wine Production Technology in the United States, M. A. Amerine (ed.). American Chemical Society, Washington, D.C.

    Google Scholar 

  • Snow, R. 1979. Toward genetic improvement of wine yeast. Am. J. Enol. Vitic. 30(1):33–37.

    Google Scholar 

  • Snow, R. 1983. Genetic improvement of wine yeast. In Yeast Genetics, J. F. T. Spencer et al. (eds.). Springer, New York.

    Google Scholar 

  • Snow, P. G., and J. F. Gallander. 1979. Deacidification of white table wines through partial fermentation with Schizosaccharomyces pombe. Am. J. Enol. Vitic. 30(1):45–48.

    Google Scholar 

  • Soles, R. M., C. S. Ough, and R. E. Kunkee. 1982. Ester concentration differences in wine fermented by various species and strains of yeast. Am. J. Enol. Vitic. 33(2):94–98.

    Google Scholar 

  • Sols, A. 1956. Selective fermentation and phosphorylation of sugars by Sauternes yeast. Biochim. Biophys. Acta 20:62–68.

    Article  Google Scholar 

  • Spencer, J. T. F., and D. M. Spencer. 1983. Genetic improvement of industrial yeasts. Ann. Rev. Microbiol. 37:121–142.

    Article  Google Scholar 

  • Subden, R. E., R. Cornell, and A. C. Noble. 1980. Evaluation of API20C clinical yeast identification system for must and wine yeast identification. Am. J. Enol. Vitic. 31(4):364–366.

    Google Scholar 

  • Suzzi, G., P. Romano, and C. Zambonelli. 1985. Saccharomyces strain selection in minimizing SO2 requirement during vinification. Am. J. Enol. Vitic. 36(3):199–202.

    Google Scholar 

  • Thomas, A. S., and A. H. Rose. 1979. Inhibitory effect of ethanol on growth and solute accumulation by Saccharomyces cerevisiae as affected by plasma membrane lipid composition. Arch. Microbiol. 122:49–55.

    Article  Google Scholar 

  • Thornton, R. J. 1982. Selective hybridization of pure culture wine yeasts. II. Improvement of fermentation efficiency and SO2 tolerance. Eur. J. Appl. Microbiol. Biotechnol. 14:150–164.

    Article  Google Scholar 

  • Thornton, R. J. 1985. The introduction of flocculation into a homothallic wine yeast. Am.J. Enol. Vitic. 36(1):47–49.

    Google Scholar 

  • Thoukis, G. 1958. The mechanism of isoamyl formation using tracer techniques. Am. J. Enol. Vitic. 9:161–167.

    Google Scholar 

  • Thoukis, G., G. Reed, and R. J. Bouthilet. 1963. Production and use of compressed yeast for winery fermentation. Am. J. Enol. Vitic. 14:148–154.

    Google Scholar 

  • Thoukis, G., M. Ueda, and D. Wright. 1965. The formation of succinic acid during alcoholic fermentation. Am. J. Enol. Vitic. 16(1):1–8.

    Google Scholar 

  • Totsuka, A., and S. Hara. 1983. Decomposition of malic acid in red wine by immobilized yeast cells (Japanese). Hakkokogaku 56:231–237.

    Google Scholar 

  • Traverso-Rueda, S., and R. E. Kunkee. 1982. The role of sterols on growth and fermentation of wine yeasts under vinification conditions. Dev. Ind. Microbiol. 23:131–143.

    Google Scholar 

  • Tredoux, H. G., J. L. F. Kock, P. M. Lategan, and H. B. Muller. 1987. A rapid identification technique to differentiate between S. cerevisiae strains and other yeast species in the wine industry. Am. J. Enol Vitic. 38(23):161–164.

    Google Scholar 

  • Troost, G. 1980. Technology of Wine (German). Eugen Ulmer, Stuttgart.

    Google Scholar 

  • Ulbrich, M., and W. Sailer. 1951. Investigations of the practicality of aeration of pure cultures of commercial wine yeasts (German). Mitt. Rebe Wein, Ser. A. (Klosterneuburg) 1:94–104.

    Google Scholar 

  • Unterholzner, O., M. Aurich, and K. Platter. 1980. Taste and flavor flaws of red wines caused by Schizosaccharomyces pombe (German). Mitt.Klosterneuburg 38:66–70.

    Google Scholar 

  • Ussegli-Tomasset, L., and R. di Stefano. 1981. Variabilities in the production of volatile components with the same yeast strain (Italian). Vini d’Italia 23:249–264.

    Google Scholar 

  • Van der Merwe, C. A., and C. J. van Wyck. 1981. The contribution of some fermentation products to the odor of dry white wine. Am. J. Enol. Vitic. 32(1):41–46.

    Google Scholar 

  • Van Vuuren, H. J. J., and L. Van der Meer. 1987. Fingerprinting of yeasts by protein electrophoresis. Am. J.Enol. Vitic. 38(1):49–53.

    Google Scholar 

  • Vezinet, F. 1981. Application of yeast genetics to wine making. Methodology and objectives (French). Bull. de l’OIV 54(608):830–832.

    Google Scholar 

  • Viegas, C. A., I. Sa-Correia, and J. M. Novais. 1985. Synergistic inhibition of the growth of Saccharomyces bayanus by ethanol and octanoic and decanoic acids. Biotech. Lett. 7(8):611–614.

    Article  Google Scholar 

  • Vojketova, G., and E. Minarik. 1985. Changes in the composition of the yeast flora of grapes, musts and wines in the wine region of the small Carpathian mountains in the course of 20 years (German). Mitt. Klosterneuburg 35:82–88.

    Google Scholar 

  • Vos, P. J. A., and R. S. Gray. 1979. The origin and control of H2S during fermentation of grape must. Am. J. Enol. Vitic. 30(3): 187–196.

    Google Scholar 

  • Wagner, P. 1981. Grapes and wine production in the East. In Wine Production Technology in the United States, M. A. Amerine (ed.). American Chemical Society, Washington, D.C.

    Google Scholar 

  • Wagner, K., P. Kreutzer, and K. Mahlmeister. 1986. Malic acid reduction produced by different pure culture wine yeasts (German). Die Weinwirtsch.-Technik 5:197–198, 201, May 13.

    Google Scholar 

  • Wahlstrom, V. L., and K. C. Fugelsang. 1988. Utilization of yeast hulls in wine making observed. Res. Bull. Calif. State Univ., Fresno, 6 p.

    Google Scholar 

  • Webb, A. D., and R. E. Kepner. 1961. Fusel oil analysis by means of gas liquid partition chromatography. Am. J. Enol. Vitic. 12:51–59.

    Google Scholar 

  • Watanabe, M., and Y. Shimazu. 1981. Quality of wine made from cAMP-added botrytized must. Am. J. Enol Vitic. 32(1):73–75.

    Google Scholar 

  • Webb, A. D., and A. C. Noble. 1976. Aroma of sherry wines. Biotech. Bioeng. 18:939–952.

    Article  Google Scholar 

  • Wibowo, D., R. Eschenbruch, C. R. Davis, G. H. Fleet, and T. H. Lee. 1985. Occurrence and growth of lactic acid bacteria in wine: A review. Am. J. Enol. Vitic. 36(4):302–313.

    Google Scholar 

  • Wick, E. 1968. Penetration of yeast by sugar during grape juice fermentations. Am. J. Enol. Vitic. 19:273–281.

    Google Scholar 

  • Wolf, E., and I. Benda. 1967. Differentiation of yeast strains by Drosophila melanogaster with regard to representatives of the genus Schizosaccharomyces (German). Weinberg Keller 14:163–166.

    Google Scholar 

  • Zee, J. A., R. E. Simard, L. L’Heureux, and J. Tremblay. 1983. Biogenic amines in wines. Am. J. Enol. Vitic. 34(1):6–9.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Van Nostrand Reinhold

About this chapter

Cite this chapter

Reed, G., Nagodawithana, T.W. (1991). Wine Yeasts. In: Yeast Technology. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-9771-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-9771-7_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-011-9773-1

  • Online ISBN: 978-94-011-9771-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics