Skip to main content

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 81))

  • 575 Accesses

Abstract

The convenience of coherent state representation is discussed from the viewpoint of what is in a broad sense called the measurement problem in quantum mechanics. Standard quantum theory in coherent state representation is intrinsically related to a number of earlier concepts conciliating quantum and classical processes. From a natural statistical interpretation, free of collapses or measurements, the usual von Neumann-Liiders collapse as well as its quantum state diffusion interpretation follow. In particular, a theory of coupled quantum and classical dynamics arises, containing the fluctuation corrections versus the fenomenological mean-field theories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. J. von Neumann, Matematische Grundlagen der Quanten Mechanik (Springer, Berlin, 1932).

    Google Scholar 

  2. G. Lüders, Ann. Phys. (Leipzig) 8, 322 (1951).

    MATH  Google Scholar 

  3. V. Bargmann, Commun. Pure Appl. Math. 14, 187 (1961). R.J.Glauber, Phys. Rev. 131, 2766 (1963); see also in the recent textbook [4].

    Article  MathSciNet  MATH  Google Scholar 

  4. D.F. Walls and G.J. Milburn, Quantum Optics (Springer, Berlin, 1994).

    MATH  Google Scholar 

  5. A. Lonke, J. Math. Phys. 19, 1110 (1978).

    Article  MathSciNet  ADS  Google Scholar 

  6. J.S. Bell, Phys. World 3, 33 (1990).

    Google Scholar 

  7. This equation preserves the positivity of ρ(x, p) provided certain analiticity conditions are satisfied initially. It preserves the pure state property of ρ though all forthcoming formulae will be valid for mixtures as well. The proofs will be given elsewhere. The Eq. (10) has an equivalent compact form: On the very right, one may observe the classical Liouville evolution equation to appear in the lowest order of the derivatives.

    Google Scholar 

  8. Full symmetrization (Weyl-ordering) is defined by the recursive rules while

    Google Scholar 

  9. L. Diósi, Quant Semiclass. Opt. 8, 309 (1996). L.Diósi, “A true equation to couple classical and quantum dynamics,” e-print archives quant-ph/9610028.

    Article  ADS  Google Scholar 

  10. I.V. Aleksandrov, Z. Naturf. 36A, 902 (1981).

    ADS  Google Scholar 

  11. W. Boucher and J. Traschen, Phys. Rev. D 37, 3522 (1988).

    Article  ADS  Google Scholar 

  12. Expansion in the derivatives yields the form showing the tricky combination of Liouville’s classical and Schrödinger’s quantum evolutions. The first line of the r.h.s. is identical to the Aleksan-drov-bracket [10] which, in itself, would violate the positivity of ρ [11].

    Google Scholar 

  13. Proofs will be given elsewhere.

    Google Scholar 

  14. N. Gisin and I.C. Percival, J. Phys. A 25, 5677 (1992).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. L. Diósi, J. Phys. A 21, 2885 (1988).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Obviously, if the quantum fluctuation of the “current” ĵ is small enough then the last two r.h.s. terms go away. If, furthermore, the states ρc(x, p) and are smooth enough functions of (itx, p) then all r.h.s. terms can be ignored and we are left with the standard mean-field equation

    Google Scholar 

  17. T.N. Sherry and E.C.G. Sudarshan, Phys. Rev. D 18, 4580 (1978).

    Article  MathSciNet  ADS  Google Scholar 

  18. G.G. de Polavieja, Phys. Lett. 220A, 303 (1996).

    ADS  Google Scholar 

  19. L. Diósi, N. Gisin, J. Halliwell, and I.C. Percival, Phys. Rev. Lett. 74, 203 (1995).

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Diósi, L. (1997). Coherent States and the Measurement Problem. In: Ferrero, M., van der Merwe, A. (eds) New Developments on Fundamental Problems in Quantum Physics. Fundamental Theories of Physics, vol 81. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5886-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5886-2_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6487-3

  • Online ISBN: 978-94-011-5886-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics