Skip to main content

Interactions of Ethylene and Polyamines in Regulating Fruit Ripening

  • Chapter
Biology and Biotechnology of the Plant Hormone Ethylene

Part of the book series: NATO ASI Series ((ASHT,volume 34))

Abstract

Ethylene is one of the simplest organic molecules which affects many aspects of growth, development and senescence of higher plants - biological effects that make it a very versatile plant hormone [21]. For instance, ethylene promotes seed germination [31], leaf senescence [19], flower abscission [27], fruit ripening [6] and development of plant defense systems [5]. In addition, it inhibits cell division and cell differentiation [2, 18, 32]. The biochemical pathway of ethylene synthesis has been elucidated and the enzymes involved have been characterized. The key enzymes regulating the production of ethylene are 1-aminocyclopropane-1-carboxylic acid [ACC) synthase, which catalyzes the formation of ACC from S-adenosylmethionine (AdoMet), and ACC oxidase, which catalyzes the synthesis of ethylene from ACC, in the following metabolic sequence: methionine→ AdoMet→ ACC→ ethylene [35]. The genes encoding ACC synthase and ACC oxidase have been cloned and sequenced from a wide variety of horticultural, agronomic and model plants [14, 33]. Also, molecular analysis of Arabidopsis and tomato mutants has identified the genes that encode proteins that either bind ethylene or regulate ethylene signal transduction pathway [14, 34].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Apelbaum A., Burgoon, A.C., Anderson, J.D., Lieberman M., Ben-Arie R., and Mattoo, A.K. (1981) Polyamines inhibit biosynthesis of ethylene in higher plant tissue and protoplasts, Plant Physiol. 68, 453–456.

    Article  PubMed  CAS  Google Scholar 

  2. Apelbaum A., Goldlust A., and Icekson, I. (1985) Control by ethylene of arginine decarboxylase activity in pea seedlings and its implication for hormonal regulation of plant growth, Plant Physiol. 79, 635–640.

    Article  PubMed  CAS  Google Scholar 

  3. Ben-Arie R., Lurie S., and Mattoo, A.K. (1982) Temperature dependent inhibitory effects of calcium and spermine on ethylene biosynthesis in apple discs correlate with changes in microsomal membrane viscosity, Plant Sci. Lett. 24, 239–247.

    Article  CAS  Google Scholar 

  4. Bleecker, A.B., Estelle, M.A., Somerville C., and Kende, H. (1988) Insensitivity to ethylene conferred by a dominant mutation inArabidopsis thaliana Science 241, 1086–10

    Article  PubMed  CAS  Google Scholar 

  5. Boiler, T. (1982) Ethylene-induced biochemical defense against pathogens, in P.F. Wareing, (ed.) Plant Growth Substances, Academic Press, London, pp. 303–312.

    Google Scholar 

  6. Brady, C.J. (1987) Fruit ripening, Annu. Rev. Plant Physiol. 38, 155–178.

    Article  CAS  Google Scholar 

  7. Burg, S.P., and Burg, E.A (1966) The interaction between auxin and ethylene and its role in plant growth. Proc. Natl. Acad. Sci. USA 55, 262–269.

    Article  PubMed  CAS  Google Scholar 

  8. Deikman J., Kline R., and Fischer, R.L. (1992) Organization of ripening and ethylene regulatory regions in a fruit-specific promoter from tomato (Lycopersicon esculentum), Plant Physiol.100, 2013–20

    Article  PubMed  CAS  Google Scholar 

  9. Dibble, A.R.G., Davies, P.J., and Mutschller, M.A (1988) Polyamine content of long-keeping Alcobaca tomato fruit, Plant Physiol. 86, 338–340.

    Article  PubMed  CAS  Google Scholar 

  10. Ecker, J.R. (1995) The ethylene signal transduction pathway in plants, Science 268, 667–675.

    Article  PubMed  CAS  Google Scholar 

  11. Evans, P.T., and Malmberg, R.L. (1989) Do polyamines have roles in plant development?, Annu. Rev. Plant Physiol. Plant Mol. Biol. 40, 235–269.

    Article  CAS  Google Scholar 

  12. Even-Chen Z., Mattoo, A.K., and Goren, R. (1982) Inhibition of ethylene biosynthesis by aminoethoxyvinylglycine and by polyamines shunts label from [3,4–14C] methionine into spermidine in aged orange peel discs, Plant Physiol. 69, 385-388.

    Article  Google Scholar 

  13. Flores, H.E., Protacio, C.M., and Signs, M.W. (1989) Primary and secondary metabolism of polyamines in plants, in plant nitrogen metabolism, in Conn, E.E., (ed.) Recent Advances in Phytochemistry, 23, Plenum Press, New York, pp 329–354.

    Google Scholar 

  14. Fluhr, R. and Mattoo, A.K. (1996) Ethylene-Biosynthesis and Perception. In Critical Reviews in Plant Sciences, CRC Press Inc., Boca Raton (In Press).

    Google Scholar 

  15. Kashiwagi K., Taneja, S.K., liu, T.-Y., Tabor, C.W. and Tabor, H. (1990) Spermidine biosynthesis in Saccharomyces cerevisiae. J. Biol. Chem. 265, 22321–22328.

    PubMed  CAS  Google Scholar 

  16. Leslie, C.A and Romani, R.J. (1986) Salicylic acid: A new inhibitor of ethylene biosynthesis, Plant Cell Reports 5, 144–146.

    Article  CAS  Google Scholar 

  17. Li N., Parsons, B.L., Liu D., and Mattoo, A.K. (1992) Accumulation of wound-inducible ACC synthase transcript in tomato fruit is inhibited by salicylic acid and polyamines, Plant Mol. Biol. 18, 477–487.

    Article  PubMed  CAS  Google Scholar 

  18. Lieberman, M. (1979) Biosynthesis and action of ethylene, Annu. Rev. Plant Physiol. 30, 533–591.

    Article  CAS  Google Scholar 

  19. Mattoo, A.K. and Aharoni, N. (1988) Ethylene and plant senescence, in L. Nooden, and A.C. Leopold, (eds.) Senescence and Aging in Plants, Academic Press, London, pp. 241–280.

    Google Scholar 

  20. Mattoo, A.K. and Anderson, J.D. (1984) Wound-induced increase in 1-aminocylcopropane-1-carboxylate synthase acitivity: Regulatory aspects and membrane association of the enzyme, in Y. Fuchs and E. Chalutz (eds.) Ethylene: Biochemistry, Physiological and Applied aspects,: Martinus Nijhoff/Dr. W.Junk Publishers, Amsterdam, pp. 139–147.

    Google Scholar 

  21. Mattoo, A.K. and Suttle, J.C. (1991) The Plant Hormone Ethylene, CRC Inc., Boca Raton.

    Google Scholar 

  22. Mehta, A.M., Saftner, R.A., Schaeffer, G.W., and Mattoo, A.K. (1991) Translational modification of an 18 kilodalton polypeptide by spermidine in rice cell suspension cultures, Plant Physiol. 95, 1294–1297.

    Article  PubMed  CAS  Google Scholar 

  23. Mehta, A.M., Saftner, R.A., Mehta, R.A., and Davies, P.J. (1994) Identification of posttranslationally modified 18-kDa protein from rice as eukaryotic translation initiation factor 5A, Plant Physiol. 106, 1413–1419.

    PubMed  CAS  Google Scholar 

  24. Oeller, P.W., Min-Wong L., Taylor, L.P., Pike, D.A., and Theologis, A. (1991) Reversible inhibition of tomato fruit senescence by antisense RNA, Science, 254, 437–439.

    Article  PubMed  CAS  Google Scholar 

  25. Roberts, D.R., Walker, M.A., Thompson, J.E., and Dumbroff, E.B. (1984) The effects of inhibitors of polyamine and ethylene biosynthesis on senescence, ethylene production and polyamine levels in cut carnation flowers, Plant Cell Physiol. 25, 315–322.

    CAS  Google Scholar 

  26. Saftner, R.A. and Baldi, B.G. (1990) Polyamine levels and tomato fruit development: possible interaction with ethylene, Plant Physiol. 92, 547–550.

    Article  PubMed  CAS  Google Scholar 

  27. Sexton, R. and Roberts, J.A. (1982) Cell biology of abscission, Annu. Rev. Plant Physiol., 33, 133–162.

    Article  CAS  Google Scholar 

  28. Slocum, R.D. (1991) Polyamine biosynthesis in plants, in R.D. Slocum and H.E. Flores, (eds.) Biochemistry and Physiology of Polyamines, CRC Press, USA, pp 23–40.

    Google Scholar 

  29. Smith, T.A. and Marshall, J.H.A. (1989) Oxidative decarboxylation of amino acids by plant extracts, Biochem. Soc. Trans. 16, 972–975.

    Google Scholar 

  30. Suttle, J.C. (1981) Effect of polyamines on ethylene production, Phytochem 20, 1477–1480.

    Article  CAS  Google Scholar 

  31. Taylorson, R.B. and Hendricks, S.B. (1977) Dormancy in seeds, Annu. Rev. Plant Physiol. 28, 331–354.

    Article  CAS  Google Scholar 

  32. Vanden Driessche, T.H., Kevers C., Collet M., and Gaspar, T.H. (1988) Acetabularia mediterranea and ethylene: production in relation with development, circadian rhythms in emission, and response to external application, J. Plant Physiol. 133, 635–639.

    Article  CAS  Google Scholar 

  33. Van Der Straeten D., Van Wiemeersch L., Goodman, H.M., and Van Montagu, M. (1990) Cloning and sequence of two different cDNAs encoding 1-aminocyclopropane-1-carboxylate synthase in tomato, Proc. Natl. Acad. Sci. USA. 87, 4859–4863.

    Article  PubMed  Google Scholar 

  34. Van Der Straeten D., Djudzman A., Van Caenegechem W., Smalle J., and Van Montagu, M. (1993) Genetic and physiological analysis of a new locus in Arabidopsis that confers resistance to 1-aminocyclopropane-1-carboxylic acid and ethylene and specifically affects the ethylene signal transduction pathway, Plant Physiol. 102, 401–408.

    Google Scholar 

  35. Yang, S.F. and Hoffman, N.E. (1984) Ethylene biosynthesis and its regulation in higher plants, Annu. Rev. Plant Physiol. 35, 155–189.

    Article  CAS  Google Scholar 

  36. Zhou D., Kalaitzis P., Mattoo, A.K., and Tucker, M.L. (1996) The mRNAfor an ETR1 homoloue in tomato is constitutively expressed in vegetative and reproductive tissues, Plant Mol. Biol. 30, 1331–1338.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mehta, R., Mattoo, A., Handa, A. (1997). Interactions of Ethylene and Polyamines in Regulating Fruit Ripening. In: Kanellis, A.K., Chang, C., Kende, H., Grierson, D. (eds) Biology and Biotechnology of the Plant Hormone Ethylene. NATO ASI Series, vol 34. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5546-5_39

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5546-5_39

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6336-4

  • Online ISBN: 978-94-011-5546-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics