Skip to main content

Convective Processes in Forest Fires

  • Chapter
Buoyant Convection in Geophysical Flows

Part of the book series: NATO ASI Series ((ASIC,volume 513))

Abstract

Buoyancy induced convective flows play a very important role in forest fires. The main properties of the convective column above the fire front are presented. The case of a linear fire front propagating in a uniform slope is used to demonstrate the importance of buoyancy induced convection in the spread of a fire. The case of a fire propagating in a canyon is presented as an example of the complex interaction of a background wind, topography and the fire.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Anderson, H. E. (1983) Predicting Wind-driven Fire Size and Shape, USDA-FS, Ogden UT, Res. Pap. INT-305

    Google Scholar 

  2. André, J. C. S., Lopes, A. G. and Viegas, D. X. (1992) A Broad Synthesis of Research on Physical Aspects of Forest Fires, Cademos Científicos sobre Incéndios Florestais, 2, Coimbra.

    Google Scholar 

  3. Banta, R. M., L. D. Olivier, E. T. Holloway, R. A. Kropfli, B. W. Bartram, R. E. Cupp and M. J. Post (1992) Smoke-Column Observations from two Forest Fires Using Doppler Lidar and Doppler Radar, J. of Applied Meteorology, 31, 1328–1349.

    Article  Google Scholar 

  4. Briggs, G.A. (1975) Plume Rise Prediction - American Meteorological Society - Workshop on Meteorology and Environment Assessment.

    Google Scholar 

  5. Briggs, G. A. (1984) Plume Rise and Buoyancy Effects - Atmospheric Science and Power Production, Ed. By D. Anderson, U. S. Dep. Of Energy, chap. 8, 327–366.

    Google Scholar 

  6. Byram, G. and Nelson, R. M. (1974) Buoyancy characteristics of a Fire Heat Source–Fire Technology, 10, 68–79.

    Article  Google Scholar 

  7. Chandler, C.P., Cheney, P. Thomas, Trabaud, L. and Williams, D. (1983) Fire in Forestry 1, John Wiley

    Google Scholar 

  8. Croba, D. and Tryfonopoulos, D. (1996) A Wind Modelling Code Capable of Coupling with Forest Fire Effects, Proc. Workshop on Forest Fire Behaviour Modelling and Testing, Ed. By D. X. Viegas, Coimbra, Portugal.

    Google Scholar 

  9. Drysdale, D. (1992) An Introduction to Fire Dynamics, John Wiley and Sons, Chichester, UK, 424 pp.

    Google Scholar 

  10. Eskinazi, S. (1975) Fluid Mechanics and Thermodynamics of Our Environment, Academic Press, New York, 422 pp.

    Google Scholar 

  11. Haines, D. A. and Smith, M. C. (1987) Three Types of Horizontal Vortices Observed in Wildland Mass and Crown Fires, J. of Climate and Applied Meteorology, 26, 1624–1637.

    Article  Google Scholar 

  12. Kourtz, P.H. and O’Regan, W.G. (1971) A Model for a Small Forest Fire… to Simulate Burned and Burning Areas for Use in a Detection Model, Forest Science, Vol. 17 N. 2.

    Google Scholar 

  13. Lee, S. L. and Emmons, H. W. (1961) A Study of Natural Convection above a Line Fire–J. Fluid Mechanics, 11, part 3, 353–368.

    Article  Google Scholar 

  14. Lockwood, F. C. and Croba, D. (1996) A Fundamentally Based Model for the Prediction of Large Fire Behaviour, Proc. Workshop on Forest Fire Behaviour Modelling and Testing, in D. X. Viegas, (ed) Coimbra, Portugal.

    Google Scholar 

  15. Lopes, A. M. G. (1993) Modelaçdo Numérica e Experimental do Escoamento Turbulento Tridimensional em Topografia Complexa: Aplicaçdo ao Caso de um Desfiladeiro - Ph. D. Thesis, Dep. Mechanical Engineering, University of Coimbra.

    Google Scholar 

  16. Lopes, A. M. G., Sousa, A. C. M. and Viegas, D. X. (1993a) Numerical simulation of three çlimensional turbulent Flow in Mountain Ridges Using a Boundary Fitted Coordinate System - 1st. European African Regional Conference, Guernesey, Channel Islands.

    Google Scholar 

  17. Lopes, A. M. G., Sousa, A. C. M. and Viegas, D. X. (1993 b) Numerical simulation of Non-isothermal Turbulent Flow over 3-D Mountain Ridges - Proc. Numerical Methods in Thermal Problems,Swansea.

    Google Scholar 

  18. Lopes, A. M. G., A. C. M., Sousa and Viegas, D. X. (1994) Prediction of Turbulent Mixed Convection Induced by Localised Heat Sources on Ridges - 10 th. Int. Heat and Mass Transfer Conf,Brighton, England.

    Google Scholar 

  19. Lopes, A. M. G., Sousa, A. C. M. and Viegas, D. X. (1995) Numerical Simulation of Turbulent flow and Fire Propagation in Complex Topography–Numerical Heat Transfer Journal, Part A, 27, 229–253.

    Google Scholar 

  20. Mercer, G. N. and Weber, R. O. (1994) Plumes Above Line Fires in a Cross Wind–Int. J. Wildland Fire 4 (4): 201–207.

    Article  Google Scholar 

  21. Penner, J. E., L. C. Haselman, Jr. and Edwards, L. L. (1986) Smoke-Plume Distributions above Large-Scale Fires: Implications for Simulations of “Nuclear Winter”, J. of Climate and Applied Meteorology, 25, 1434–1444.

    Article  Google Scholar 

  22. Rothermel, R. (1972) A Mathematical Model for Predicting Fire Spread in Wildland Fuels- USDA-FS, Ogden UT, Res. Pap. INT-115.

    Google Scholar 

  23. Rothermel, R. (1983) How to Predict the Spread and Intensity of Forest and Range Fires - USDA-FS, Nat. Wildfire Coord. G., Tech, Rep. INT-143.

    Google Scholar 

  24. Rothermel, R. (1991) Predicting the Behaviour and Size of Crown Fires in the Northern Rocky Mountains - USDA-FS, Res. Pap. INT-359.

    Google Scholar 

  25. Small, R. D. and Larson, D. A. (1969) Velocity Fields Generated by Large Fires - Pacific Sierra Res. Corp.

    Google Scholar 

  26. Turner, J. S. 1973 - Buoyancy Effects in Fluids,Cambridge University Press, 368 pp.

    Google Scholar 

  27. Viegas, D. X. and Neto, L. P. C. (1992) Wall shear stress as a parameter to correlate the rate of spread of a wind induced forest fire–Int. J. Wildland Fire, 2 (4): 69–86.

    Article  Google Scholar 

  28. Viegas, D. X., Varela, V. and Borges, C. M. (1994) On the Evolution of a Linear Fire Front on a Slope - Proc. II Int. Conference on Forest Fire Research, Coimbra.

    Google Scholar 

  29. Vines, R. G. (1973) Air Movements Above Large Bush fires–Proc. Tall Timber Fire Ecol. Conf. 13: 295–301.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Viegas, D.X. (1998). Convective Processes in Forest Fires. In: Plate, E.J., Fedorovich, E.E., Viegas, D.X., Wyngaard, J.C. (eds) Buoyant Convection in Geophysical Flows. NATO ASI Series, vol 513. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-5058-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-5058-3_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6125-4

  • Online ISBN: 978-94-011-5058-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics