Skip to main content

The Cladosporium Fulvum–Tomato Interaction

A Model System to Study Gene-for-Gene Relationships

  • Chapter
Mechanisms of Resistance to Plant Diseases

Summary

The pathosystem Cladosporiumfulvum-tomato has become a model system in molecular plant pathology as both fungus and host plant are amenable to study by molecular methods. Many resistance genes (Cf) are available in near-isogenic lines of tomato, while many races of C. fulvum exist that can overcome one or more Cf genes, giving rise to a gene-for-gene relationship. C. fulvum is a biotrophic pathogen that penetrates tomato leaves through stomata and colonizes the intercellular space around leaf mesophyll cells, where it stays extracellular during its entire life cycle. In compatible interactions the fungus produces various extracellular proteins (ECPs), some of which represent crucial virulence factors. In incompatible interactions fungal growth is arrested very soon after penetration. Resistance is associated with deposition of callose, a hypersensitive response (HR), electrolyte leakage and accumulation of phytoalexins and pathogenesis-related proteins.

HR-based resistance is induced in plants with Cf genes, by matching race-specific elicitors secreted by C. fulvum immediately after stomatal penetration. The race-specific elicitors AVR4 and AVR9 have been characterized and their encoding genes Avr4 and Avr9 have been cloned. Both elicitors are cystine-rich peptides of which AVR9 belongs to the family of cystine-knotted peptides. The resistance genes Cf-2, Cf-4, Cf-5 and Cf-9 have been cloned. They encode proteins that belong to a superfamily of leucine-rich repeat (LRR) proteins. The major part of the Cf proteins contains 25–38 LRRs which is extracellular, while a short C-terminal domain is cytoplasmic.

Two major players in the gene-for-gene system, i.e. the Avr gene and the corresponding Cfgene, have been cloned, but so far there is no evidence that their products interact directly. Membranes of both Cf-9-plus and Cf-9-minus plants contain a similar high affinity binding site for the AVR9 peptide (Kd = 70 pM). To determine whether Cf-9 represents a low affinity binding site, binding studies of AVR9 to in vitro-produced Cf-9 protein are required. treatment with matching AVR elicitors. These responses include an HR and an oxidative burst, as well as activation of enzymes such as H+-ATPase and NADPH oxidase.

Tomato lines have been found that respond with an HR to the virulence factor ECP2, which indicates that it can also function as an avirulence factor. The resistance gene that recognizes ECP2 has been designated Cf-ECP2 and most probably represents a durable resistance gene.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Abbreviations

AF:

apoplastic fluid

Avr:

avirulence gene encoding race-specific elicitor

Ecp:

geneencoding extracellular protein

Cf:

resistance gene against Cladosporium fulvum

GUS:

B-glucuronidase

HR:

hypersensitive response

LRR:

leucine-rich repeat

NMR:

nuclear magnetic resonance

PR:

pathogenesis-related

PVX:

potato virus X

TNF:

tumor necrosis factor

TNFR:

tumor necrosis factor receptor

References

  • Agrios GN (1997) Plant Pathology, Academic Press, London pp. 63–82

    Google Scholar 

  • Alcami A and Smith GL (1992) A soluble receptor for interleukin-l (encoded by vaccinia virus: a novel mechanism of virus modulation of the host response to infection. Cell 71: 153–167

    Article  PubMed  CAS  Google Scholar 

  • Ashfield T, Hammond-Kosack KE, Harrison K and Jones JDG (1994) Cf gene-dependent induction of a β-l,3-glucanase promoter in tomato plants infected with Cladosporium fulvum. Mol Plant Microbe Interact 7: 645–657

    Article  CAS  Google Scholar 

  • Bazan JF (1993) Emerging families of cytokines and receptors. Curr Biol 3: 603–606

    Article  PubMed  CAS  Google Scholar 

  • Becraft PW, Stinard PS and McCarty DR (1996) CRINKLY4: a TNFR-like receptor kinase involved in maize epidermal differentiation. Science 273: 1406–1409

    Article  PubMed  CAS  Google Scholar 

  • Bol JF, Linthorst, HJM and Cornelissen BJC (1990) Plant pathogenesis-related proteins induced by virus infection. Annu Rev Phytopathol 28: 113–138

    Article  CAS  Google Scholar 

  • Bond TET (1938) Infection experiments with Cladosporium fulvum Cooke and related species. Ann Appl Biol 25: 277–307

    Article  Google Scholar 

  • Boukema IW (1981) Races of Cladosporium fulvum Cke. (Fulvia fulva) and genes for resistance in the tomato (Lycopersicon Mill.). In: Philouze J (ed), Proceedings of the Meeting of the Eucarpia Tomato Working Group, Avignon, 287–292

    Google Scholar 

  • Butler EJ and Jones SG (1949) Tomato leaf mould, Cladosporium fulvum Cooke. In: Buttler EJ and Jones SG (eds), Plant Pathology, MacMillan, London pp. 672–678

    Google Scholar 

  • Cooke MC (1883) New American Fungi. Grevillea 12: 32

    Google Scholar 

  • Danhash N, Wagemakers CAM, Van Kan JAL and De Wit PJGM (1993) Molecular characterization of four chitinase cDNAs obtained from Cladosporium fulvum-intected tomato. Plant Mol Biol 22: 1017–1029

    Article  PubMed  CAS  Google Scholar 

  • Day PR (1957) Mutation to virulence in Cladosporium fulvum. Nature 179: 1141

    Article  Google Scholar 

  • De Wit PJGM (1977) A light and scanning electron-microscopic study of infection of tomato plants by virulent and avirulent races of Cladosporium fulvum. Neth J Plant Pathol 83: 109–122

    Article  Google Scholar 

  • De Wit PJGM (1992) Molecular characterization of gene-for-gene systems in plant-fungus interactions and the application of avirulence genes in control of plant pathogens. Annu Rev Phytopathol 30: 391–418

    Article  PubMed  Google Scholar 

  • De Wit PJGM (1995) Fungal avirulence genes and plant resistance genes: unravelling the molecular basis of gene-for-gene resistance. Adv Bot Res 21: 147–185

    Article  Google Scholar 

  • De Wit PJGM (1997) Pathogen avirulence and plant resistance: a key role for recognition. Trends Plant Sci 2: 452–458

    Article  Google Scholar 

  • De Wit PJGM and Flach W (1979) Differential accumulation of phytoalexins in tomato leaves but not in fruits after inoculation with virulent and avirulent races of Cladosporium fulvum. Physiol Plant Pathol 15: 257–267

    Article  Google Scholar 

  • De Wit PJGM and Roseboom PHM (1980) Isolation, partial characterization and specificity of glycoprotein elicitors from culture filtrates, mycelium and cell walls of Cladosporium fulvum (syn. Fulvia fulva). Physiol Plant Pathol 16: 391–408

    Article  Google Scholar 

  • De Wit PJGM and Kodde E (1981a) Induction of polyacetylenic phytoalexins in Lycopersicon esculentum after inoculation with Cladosporium fulvum (syn. Fulvia fulva). Physiol Plant Pathol 18 143–148

    Article  Google Scholar 

  • De Wit, PJGM and Kodde, E (1981b). Further characterization of cultivar-specificity of glycoprotein elicitors from culture filtrates and cell walls of Cladosporium fulvum (syn. Fulvia fulva) Physiol Mol Plant Pathol 18:297–314.

    Article  Google Scholar 

  • De Wit PJGM and Spikman G (1982) Evidence for the occurrence of race-and cultivar-specific elicitors of necrosis in intercellular fluids of compatible interactions between Cladosporium fulvum and tomato. Physiol Plant Pathol 21: 1–11

    Article  Google Scholar 

  • De Wit PJGM and Van der Meer FE (1986) Accumulation of the pathogenesis-related tomato leaf protein P14 as an early indicator of incompatibility in the interaction between Cladosporium fulvum (syn. Fulvia fulva) and tomato. Physiol Mol Plant Pathol 28: 203–214

    Article  Google Scholar 

  • De Wit PJGM, Hofman, JE and Aarts JMMJG (1984) Origin of specific elicitors of chlorosis and necrosis occurring in intercellular fluids of compatible interactions of Cladosporium fulvum (syn. Fulvia fulva) and tomato. Physiol Plant Pathol 24: 17–23

    Article  Google Scholar 

  • De Wit PJGM, Hofman JE, Velthuis GCM and Kuc JA (1985) Isolation and characterization of an elicitor of necrosis isolated from intercellular fluids of compatible interactions of Cladosporium fulvum (syn. Fulvia fulva) and tomato. Plant Physiol 77: 642–647

    Article  Google Scholar 

  • De Wit PJGM, Buurlage MB and Hammond KE (1986) The occurrence of host, pathogen and interactionspecific proteins in the apoplast of Cladosporium fulvum (syn. Fulvia fulva) infected tomato leaves. Physiol Mol Plant Pathol 29: 159–172

    Article  Google Scholar 

  • Dickinson CD, Altabella T, Chripeels MJ (1991) Slow-growth phenotype of transgenic tomato expressing apoplastic invertase. Plant Physiol 95:420–425

    Article  PubMed  CAS  Google Scholar 

  • Dickinson MJ, Jones DA and Jones JDG (1993) Close linkage between the Cf-2ICf-5 and Mi resistance loci in tomato. Mol Plant-Microbe Interact 6: 341–347

    Article  PubMed  CAS  Google Scholar 

  • Dixon MS, Jones DA, Keddle JS, Thomas CM, Harrison K and Jones JDG (1996) The tomato Cf-2 disease resistance locus comprises 2 functional genes encoding leucine-rich repeat proteins. Cell 84: 451–459

    Article  PubMed  CAS  Google Scholar 

  • Dow JM and Callow JA (1979a) Partial characterization of glycopeptides from culture filtrates of Fulvia fulva (Cooke) Cifferi (syn. Cladosporium fulvum), the tomato leaf mould pathogen, J Gen Microbiol 113:57–66

    CAS  Google Scholar 

  • Dow JM and Callow JA (1979b) Leakage of electrolytes from isolated leaf mesophyll cells of tomato induced by glycopeptides from culture filtrates of Fulvia fulva (Cooke) Ciferri (syn. Fulvia fulva). Physiol Plant Pathol 15 27–34

    Article  CAS  Google Scholar 

  • Flor HH (1942) Inheritance of pathogenicity in Melampsora lini. Phytopathol 32: 653–669

    Google Scholar 

  • Flor HH (1971) Current status of the gene-for-gene concept. Annu Rev Phytopathol 9: 275–296

    Article  Google Scholar 

  • Gooding LR (1992) Virus proteins that counteract host immune defenses. Cell 71: 5–7

    Article  PubMed  CAS  Google Scholar 

  • Hammond-Kosack KE and Jones JDG (1994) Incomplete dominance of tomato Cf genes for resistance to Cladosporium fulvum. Mol Plant-Microbe Interact 7: 58–70

    Article  CAS  Google Scholar 

  • Hammond-Kosack KE and Jones JDG (1996) Resistance gene-dependent plant defense responses. Plant Cell 8: 1773–1791

    PubMed  CAS  Google Scholar 

  • Hammond-Kosack KE and Jones JDG (1997) Plant disease resistance genes. Annu Rev Plant Physiol Plant Mol Biol 48: 575–607

    Article  PubMed  CAS  Google Scholar 

  • Hammond-Kosack KE, Silverman P, Raskin I and Jones JDG (1996) Race-specific elicitors of Cladosporium fulvum induce changes in cell morphology and the synthesis of ethylene and salicylic acid in tomato plants carrying the corresponding Cf disease resistance genes. Plant Physiol 110: 1381–1394

    PubMed  CAS  Google Scholar 

  • Higgins VJ (1982) Response of tomato to leaf injection with conidia of virulent and avirulent races of Cladosporium fulvum. Physiol Plant Pathol 20: 145–155

    Article  Google Scholar 

  • Higgins VJ and De Wit PJGM (1985) Use of race-and cultivar-specific elicitors from intercellular fluids for characterizing races of Cladosporium fulvum and resistant tomato cultivars. Phytopathol 75: 695–699

    Article  Google Scholar 

  • Honée G, Buitink J, Jabs T, De Kloe J, Sijbolts F, Apotheker M, Weide R, Sijen T, Stuiver M and De Wit PJGM (1998) Induction of defence-related responses in Cf9 tomato cells by the AVR9 elicitor peptide of Cladosporium fulvum is developmentally regulated. Plant Physiol 117: 809–820

    Article  PubMed  Google Scholar 

  • Hubbeling N (1978) Breakdown of resistance of the Cf-5 gene in tomato by another new race of Fulvia fulva. Med Fac Landbouww Rijksuniv Gent 43: 891–894

    Google Scholar 

  • Jones DA and Jones JDG (1996) The role of leucine-rich repeat proteins in plant defences. Adv Bot Res 24: 91–167

    Google Scholar 

  • Jones DA, Dickinson MJ, Balint-Kurti PJ, Dixon MS and Jones JDG (1993) Two complex resistance loci revealed in tomato by classical and RFLP mapping of the Cf-2, Cf-4, Cf-5, and Cf-9 genes for resistance to Cladosporium fulvum. Mol Plant-Microbe Interact 6: 348–357

    Article  CAS  Google Scholar 

  • Jones DA, Thomas CM, Hammond-Kosack KE, Balint-Kurti PJ and Jones JDG (1994) Isolation of the tomato Cf-9 gene for resistance to Cladosporium fulvum by transposon tagging. Science 266: 789–793.

    Article  PubMed  CAS  Google Scholar 

  • Joosten MHAJ, De Wit PJGM (1988) Isolation, purification and preliminary characterization of a protein specific for compatible Cladosporium fulvum (syn. Fulvia fulva)-tomato interactions. Physiol Mol Plant Pathol 33:241–253

    Article  CAS  Google Scholar 

  • Joosten MHAJ, De Wit PJGM (1989) Identification of several pathogenesis-related proteins in tomato leaves inoculated with Cladosporium fulvum (syn. Fulvia fulva) as l,3-β-glucanases and chitinases. Plant Physiol 89: 945–951

    CAS  Google Scholar 

  • Joosten MHAJ, Hendrickx LJM and De Wit PJGM (1990) Carbohydrate composition of apoplastic fluids isolated from tomato leaves inoculated with virulent or avirulent races of Cladosporium fulvum (syn. Fulvia fulva) Neth J Plant Pathol 96: 103–112

    Article  CAS  Google Scholar 

  • Joosten MHAJ, Cozijnsen AJ and De Wit PJGM (1994) Host resistance to a fungal tomato pathogen lost by a single base-pair change in an avirulence gene. Nature 367: 384–387

    Article  PubMed  CAS  Google Scholar 

  • Joosten MHAJ, Verbakel M, Nettekoven ME, Van Leeuwen J, Van der Vossen RTM and De Wit PJGM (1995) The phytopathogenic fungus Cladosporium fulvum is not sensitive to the chitinase and 1,3-β-glucanase defence proteins of its host tomato. Physiol and Mol Plant Pathol 46: 45–59

    Article  CAS  Google Scholar 

  • Joosten MHAJ, Vogelsang R, Cozijnsen TJ, Verberne MC and De Wit PJGM (1997) The biotrophic fungus Cladosporium fulvum circumvents Cf-4-mediated resistance by producing instable AVR4 elicitors. Plant Cell 9: 1–13

    Google Scholar 

  • Keen NT (1975) Specific elicitors of plant phytoalexin production: determinants of race-specificity in pathogens. Science 187: 74–75

    Article  PubMed  CAS  Google Scholar 

  • Kerr EA and Bailey DL (1964) Resistance to Cladosporium fulvum Cke obtained from wild species of tomato. Can J Bot 42: 1541–1554

    Article  Google Scholar 

  • Kobe B and Deisenhofer J (1993) Crystal structure of porcine ribonuclease inhibitor, a protein with leucine-rich repeats. Nature 366: 751–756

    Article  PubMed  CAS  Google Scholar 

  • Kooman-Gersmann M, Honée G, Bonnema G and De Wit PJGM (1996) A high-affinity binding site for the AVR9 peptide elicitor of Cladosporium fulvum is present on plasma membranes of tomato and other solanaceous plants. Plant Cell 8: 929–938

    PubMed  CAS  Google Scholar 

  • Kooman-Gersmann M, Vogelsang R, Hoogendijk ECM and De Wit PJGM (1997) Assignment of amino acid residues of the AVR9 peptide of Cladosporium fulvum that determine elicitor activity. Mol Plant-Microbe Interact 10: 821–829

    Article  PubMed  CAS  Google Scholar 

  • Kooman-Gersmann M, Vogelsang R, Vossen P, Van den Hooven H, Mahé E, Honée G and De Wit PJGM (1997) Correlation between binding affinity and necrosis-inducing activity of mutant AVR9 elicitors. Plant Physiol: 117: 609–618

    Article  Google Scholar 

  • Langford AN (1937) The parasitism of Cladosporium fulvum and the genetics of resistance to it. Can J Res 15: 108–128

    Article  Google Scholar 

  • Laterrot H (1986) Race 2.5.9, a new race of Cladosporium fulvum (Fulvia fulva) and sources of resistance in tomato. Neth J Plant Pathol 92: 305–307

    Article  Google Scholar 

  • Laugé R, Joosten MHAJ, Van den Ackerveken GFJM, Van den Broek HWJ and De Wit PJGM (1997) The in planta-produced extracellular proteins ECPl and ECP2 of Cladosporium fulvum are virulence factors. MPMI 10: 725–734

    Article  Google Scholar 

  • Laugé R, Dmitriev AP, Joosten MHAJ and De Wit PJGM (1998) Additional resistance gene(s) against Cladosporium fulvum present on the Cf-9 introgression segment are associated with strong PR protein accumulation. Mol Plant-Microbe Interact 11: 301–308

    Article  Google Scholar 

  • Lazarovits G and Higgins VJ (1976a) Histological comparison of Cladosporium fulvum race 1 on immune, resistant, and susceptible tomato varieties. Can J Bot 54 224–234

    Article  Google Scholar 

  • Lazarovits G and Higgins VJ (1976b) Ultrastructure of susceptible, resistant, and immune reactions of tomato to races of Cladosporium fulvum. Can J of Bot 54 235–247

    Article  Google Scholar 

  • Lazarovits G and Higgins VJ (1979) Biological activity and specificity of a toxin produced by Cladosporium fulvum. Phytopathol 69: 1056–1061

    Article  CAS  Google Scholar 

  • Lazarovits G, Bhullar BS, Sugiyama HJ and Higgins VJ (1979) Purification and partial characterization of a glycoprotein toxin produced by Cladosporium fulvum. Phytopathol 69: 1062–1068

    Article  CAS  Google Scholar 

  • Lindhout P, Korta W, Cislik M, Vos I and Gerlagh T (1989) Further identification of races of Cladosporium fulvum (Fulvia fulva) on tomato originating from the Netherlands, France and Poland. Neth J Plant Pathol 95: 143–148

    Article  Google Scholar 

  • Marmeisse R, Van den Ackerveken GFJM, Goosen T, De Wit PJGM and Van den Broek HWJ (1993) Disruption of the avirulence gene avr9 in two races of the tomato pathogen Cladosporium fulvum causes virulence on tomato genotypes with the complementary resistance gene Cf-9. Mol Plant-Microbe Interact 6: 412–417

    Article  CAS  Google Scholar 

  • Marmeisse R, Van den Ackerveken GFJM, Goosen T, De Wit PJGM and Van den Broek HWJ (1994) The in-planta induced ecp2 gene of the tomato pathogen Cadosporium fulvum is not essential for pathogenicity. Curr Genet 26: 245–250

    Article  PubMed  CAS  Google Scholar 

  • May MJ, Hammond-Kosack KE and Jones JDG (1996) Involvement of reactive oxygen species, glutathione metabolism, and lipid peroxidation in the Cf-gene-dependent defense response of tomato cotyledons induced by race-specific elicitors of Cladosporium fulvum. Plant Physiol 110: 1367–1379

    PubMed  CAS  Google Scholar 

  • Marzluf GA (1996) Regulation of nitrogen metabolism in mycelium fungi. In: Brambl R and Marzluf GA (eds), The Mycota III. Biochemistry and Molecular Biology. Berlin, Heidelberg, Springer Verlag: pp 357–368

    Chapter  Google Scholar 

  • Mossman K, Nation P, Macen J, Garbutt M, Lucas A and McFadden G (1996) Myxoma virus M-T7, a secreted homolog of the interferon-g receptor, is a critical virulence factor for the development of myxomatosis in European rabbits. Virology 215: 17–30

    Article  PubMed  CAS  Google Scholar 

  • Noeldner PK-M, Coleman MJ, Faulks R and Oliver RP (1994) Purification and characterization of mannitol dehydrogenase from the fungal tomato pathogen Cladosporium fulvum (syn. Fulvia fulva). Physiol Mol Plant Pathol 45: 281–289

    Article  CAS  Google Scholar 

  • Oliver RP (1992) A model system for the study of plant-fungal interactions: tomato leaf mold caused by Cladosporium fulvum. In: Verma DPSE (ed), Molecular Signals in Plant-Microbe Communications, CRC Press, Boca Raton, Florida 97–106

    Google Scholar 

  • Oliver RP, Farman ML, Jones JDG and Hammond-Kosack KE (1993) Use of fungal transformants expressing ?-glucoronidase activity to detect infection and measure hyphal biomass in infected plant tissue. Mol Plant Microbe Interact 6: 521–525

    Article  CAS  Google Scholar 

  • Pallaghy PK, Nielsen KJ, Craick DJ and Norton RS (1994) A common structural motif incorporating a cystine knot and a triple-stranded beta-sheet in toxic and inhibitory Polypeptides. Protein Sci 3: 1833–1839

    Article  PubMed  CAS  Google Scholar 

  • Parniske M, Hammond-Kosack KE, Golstein C, Thomas CM, Jones DA, Harrison K, Wulff BBH and Jones JDG (1997) Novel disease resistance specificities result from sequence exchange between tandemly repeated genes at the Cf-4/9 locus of tomato. Cell 91: 1–20

    Article  Google Scholar 

  • Peever TL and Higgins VJ (1989a) Suppression of the activity of non-specific elicitor from Cladosporium fulvum by intercellular fluids from tomato leaves. Physiol Mol Plant Pathol 34 471–482

    Article  Google Scholar 

  • Peever TL and Higgins VJ (1989b) Electrolyte leakage, lipoxygenase, and lipid peroxidation induced in tomato leaf tissue by specific and nonspecific elicitors from Cladosporium fulvum. Plant Physiol 90 867–875

    Article  PubMed  CAS  Google Scholar 

  • Scholtens-Toma IMJ and De Wit PJGM (1988) Purification and primary structure of a necrosis-inducing peptide from the apoplastic fluids of tomato infected with Cladosporium fulvum (syn. Fulvia fulva). Physiol Mol Plant Pathol 33: 59–67

    Article  Google Scholar 

  • Spriggs M, Hruby DE, Maliszewski CR, Pickup DJ, Sims JE, Buller RML and VanSlyke J (1992) Vaccinia and cowpox viruses encode a novel secreted interleukin-1-binding protein. Cell 71: 145–152

    Article  PubMed  CAS  Google Scholar 

  • Stevens MA and Rick CM (1988) Genetics and Breeding. In The Tomato Crop, Atherton JG and Rudich J eds, Chapman and Hall, London 35–109

    Google Scholar 

  • Takken FLW, Schipper D, Nijkamp HJJ and Hille J (1998) Identification and Ds-tagged isolation of a new gene at the Cf-4 locus of tomato involved in disease resistance to Cladosporium fulvum race 5. Plant J 14: 401–411

    Article  PubMed  CAS  Google Scholar 

  • Thomas CM, Jones DA, Pamiska M, Harrison K, Ballint-Kurti PJ, Hatzixanthis K and Jones JDG (1997) Charactarisation of the tomato Cf-4 gene for resistance to Cladosporium fulvum identified sequences which determine recognitional specificity in Cf-4 and Cf-9. Plant Cell 9: 1–12

    Google Scholar 

  • Van den Ackerveken GFJM, Van Kan JAL and De Wit PJGM (1992) Molecular analysis of the avirulence gene avr9 of the fungal tomato pathogen Cladosporium fulvum fully supports the gene-for-gene hypothesis. Plant J 2: 359–366

    Article  PubMed  Google Scholar 

  • Van den Ackerveken GFJM, Vossen JPMJ and De Wit PJGM (1993a). The AVR9 race-specific elicitor of Cladosporium fulvum is processed by endogenous and plant proteases. Plant Physiol 103: 91–96

    Article  PubMed  Google Scholar 

  • Van den Ackerveken GFJM, Van Kan JAL, Joosten MHAJ, Muisers JM, Verbakel, HM and De Wit PJGM (1993b) Characterization of two putative pathogenicity genes of the fungal tomato pathogen Cladosporium fulvum. Mol Plant-Microbe Interact 6 210–215

    Article  PubMed  Google Scholar 

  • Van den Ackerveken GFJM, Dunn RM, Cozijnsen AJ, Vossen JPMJ, Van den Broek HWJ and De Wit PJGM (1994) Nitrogen limitation induces expression of the avirulence gene avr9 in the tomato pathogen Cladosporium fulvum. Mol Gen Genet 243: 277–285

    Article  PubMed  Google Scholar 

  • Van Dijkman A and Kaars Sijpesteijn A (1973) Leakage of pre-absorbed 32P from tomato leaf disks infiltrated with high molecular weight products of incompatible races of Cladosporium fulvum. Physiol Plant Pathol 3: 57–67

    Article  Google Scholar 

  • Van Kan JAL, Van den Ackerveken GFJM and De Wit PJGM (1991) Cloning and characterization of cDNA of avirulence gene avr9 of the fungal tomato pathogen Cladosporium fulvum, causal agent of tomato leaf mold. Mol Plant-Microbe Interact 4: 52–59

    Article  PubMed  Google Scholar 

  • Van Kan JAL, Joosten MHAJ, Wagemakers CAM, Van den Berg-Velthuis GCM and De Wit PJGM (1992) Differential accumulation of mRNAs encoding extracellular and intracellular PR proteins in tomato induced by virulent and avirulent races of Cladosporium fulvum. Plant Mol Biol 20: 513–527

    Article  PubMed  Google Scholar 

  • Vera-Estrella R, Blumwald E and Higgins VJ (1992) Effect of specific elicitors of Cladosporium fulvum on tomato suspension cells. Plant Physiol 99: 1208–1215

    Article  PubMed  CAS  Google Scholar 

  • Vera-Estrella R, Blumwald E, and Higgins VJ (1993) Non-specific glycopeptide elicitors of Cladosporium fulvum: Evidence for involvement of active oxigen species in elicitor-induced effects on tomato cell suspensions. Physiol Mol Plant Pathol 42: 9–12

    Article  CAS  Google Scholar 

  • Vera-Estrella R, Higgins VJ and Blumwald E (1994a) Plant defence response to fungal pathogens. II. G-protein-mediated changes in host plasma membrane redox reactions. Plant Physiol 106 97–102

    PubMed  CAS  Google Scholar 

  • Vera-Estrella R, Barkla BJ, Higgins VJ and Blumwald E (1994b) Plant defence response to fungal pathogens. Activation of host-plasma membrane H+-ATPase by elicitor induced enzyme dephosphorylation. Plant Physiol 104 209–215

    CAS  Google Scholar 

  • Vervoort J, Van den Hooven HW, Berg A, Vossen P, Vogelsang R, Joosten, MHAJ and De Wit PJGM (1997) The race-specific elicitor AVR9 of the tomato pathogen Cladosporium fulvum: a cystine-knot protein. Sequence-specific lH NMR assignments, secondary structure and global fold of the protein. FEBS Lett 404: 153–158

    Article  PubMed  CAS  Google Scholar 

  • Wubben JP, Eijkelboom CA and De Wit PJGM (1994a) Accumulation of pathogenesis-related proteins in the epidermis of tomato leaves infected by Cladosporium fulvum. Neth J of Plant Pathol 99 231–239

    Article  Google Scholar 

  • Wubben JP, Joosten MHAJ and De Wit PJGM (1994b) Expression and localisation of two in planta induced extracellular proteins of the fungal tomato pathogen Cladosporium fulvum. Mol Plant-Microbe Interact 7 516–524

    Article  PubMed  CAS  Google Scholar 

  • Wubben JP, Joosten MHAJ, Van Kan JAL and De Wit PJGM (1992) Subcellular localization of plant chitinases and 1,3-β-glucanases in Cladosporium fulvum (syn. Fulvia fulva)-infected tomato leaves. Physiol Mol Plant Pathol 41: 23–32

    Article  CAS  Google Scholar 

  • Wubben JP, Lawrence CB and De Wit PJGM (1996) Differential induction of chitinase and 1,3-β-glucanase gene expression in tomato by Cladosporium fulvum and its race-specific elicitors. Physiol Mol Plant Pathol 48: 105–116

    Article  CAS  Google Scholar 

  • Xing T, Higgins VJ and Blumwald E (1996) Regulation of plant defense response to fungal pathogens: Two types of protein kinases in reversible phosphorylation of the host plasma membrane H+-ATPase. Plant Cell 8: 555–564

    PubMed  CAS  Google Scholar 

  • Xing T, Higgins VJ and Blumwald E (1997) Race-specific elicitors of Cladosporium fulvum promote translocation of cytosolic components of NADPH oxidase to plasma membrane of tomato cells. Plant Cell 9: 249–259

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

De Wit, P.J.G.M. (2000). The Cladosporium Fulvum–Tomato Interaction. In: Slusarenko, A.J., Fraser, R.S.S., van Loon, L.C. (eds) Mechanisms of Resistance to Plant Diseases. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3937-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3937-3_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0399-8

  • Online ISBN: 978-94-011-3937-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics