Skip to main content

Isoenergy density theory: exchange of surface and volume energy

  • Chapter
Mechanics of Fracture Initiation and Propagation

Part of the book series: Engineering Applications of Fracture Mechanics ((EAFM,volume 11))

Abstract

Fracture mechanics grew out of the need for a better understanding of how to control material and structure failure behavior after World War II. Notwithstanding the progress that has already been made in the past two decades, the fundamentals of the fracture process remain fragmented due to the lack of a generel theory. The performance limits and reliability objectives dealing with the application of advanced materials and structures have altered considerably in recent times and call for a quantitative and consistent assessment of the material damage process that involves changes at the atomic, microscopic and macroscopic scale level. These changes though reflect a complex dependence on the material microstructure; they continue to be elusive if the combined interaction of space/time/temperature is not considered. Past methodologies [13] that relied on a single-parameter characterization would no longer be adequate for situations where the failure modes are more complex.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sih, G. C., Wei, R. P. and Erdogan, F. (eds.), Linear Fracture Mechanics, Envo Publishing Co., Inc., Bethlehem, Pa (1976).

    Google Scholar 

  2. Pellini, W. S., Principles of Strnctural Integrity Technology, Office of Naval Research, Arlington, Va. (1976).

    Google Scholar 

  3. Brown, W. F.,Jr. and Srawley, J. E., Plane strain crack toughness testing of high strength metallic materials, ASTM Special Technical Publication No. 410 (1966).

    Google Scholar 

  4. Wells, A. A., Application of fracture mechanics at and beyond general yielding, British Welding Journal 10, pp. 563–569 (1963).

    Google Scholar 

  5. Begley, J. A. and Landes, J. E., The J-integral as a fracture criterion, Fracture Toughness, ASTM Special Technical Publication No. 514, pp. 1–20 (1972).

    Google Scholar 

  6. Bucci, R. J., Paris, P. C., Landes, J. E. and Rice, J. R., J integral estimation procedure, Fracture Toughness, ASTM Special Technical Publication No. 514, pp. 40–69 (1972).

    Google Scholar 

  7. Shih, C. F., DeLorenzi, H. G. and Andrews, W. R., Studies on crack initiation and stable crack growth, Elastic-Plastic Fracture Mechanics, ASTM Special Technical Publication No. 668, pp. 65–120 (1979).

    Google Scholar 

  8. Bernstein, H. L., A study of J-integral method using polycarbonate, AFWAL-TR-82-4080, Air Force Wright Aeronautical Laboratories, Wright-Patterson Air Force Base, Ohio, August (1982).

    Google Scholar 

  9. Sih, G. C. and Tzou, D. Y., Crack extension resistance of polycarbonate material, Journal of Theoretical and Applied Fracture Mechanics 2, No. 2, pp. 220–234 (1984).

    Google Scholar 

  10. Sih, G. C., Mechanics of subcriticai crack growth, in Fracture Mechanics Technology Applied to Material Evaluation and Structure Design, edited by G. C. Sih, N. E. Ryan and R. Jones, Martinas Nijhoff Publishers, The Netherlands, pp. 3–18 (1982).

    Google Scholar 

  11. Sih, G. C. and Tzou, D. Y., Mechanics of nonlinear crack growth: effects of specimen size and loading step, in Modelling Problems in Crack Tip Mechanics, J. T. Pindera, ed., Martinus Nijhoff Publishers, The Netherlands, pp. 155–169 (1984).

    Chapter  Google Scholar 

  12. Sih, G. C. and Chen, C., Non-self-similar crack growth in an elastic-plastic finite thickness plate, Journal of Theoretical and Applied Fracture Mechanics 3, No. 2, pp. 125–139 (1985).

    Article  Google Scholar 

  13. Sih, G. C. and Tzou, D. Y., Dynamic fracture rate of Charpy V-notch specimen, Journal os Theoretical and Applied Fracture Mechanics 5, No. 3, pp. 189–203 (1986).

    Article  Google Scholar 

  14. Sih, G. C., Fracture mechanics of engineering structural components, in Fracture Mechanics Methodology, edited by G. C. Sih and L. Faria, Martinas Nijhoff Publishers, The Netherlands, pp. 35–101 (1984).

    Chapter  Google Scholar 

  15. Sih, G. C., Outlook on fracture mechanics, in The Mechanism of Fracture, edited by V. S. Goel, Proceedings of the Annual American Society of Metal Conference, Solt Lake City, Utah, pp. 1–16, December 2–6 (1985).

    Google Scholar 

  16. Paris, P. C., The growth of cracks due to variations in load, Ph.D. Dissertation, Department of Mechanics, Lehigh University (1962).

    Google Scholar 

  17. Wei, R. P., Contribution of fracture mechanics to subcritical crack growth studies, in Linear Fracture Mechanics, edited by G. C. Sih, R. P. Wei and F. Erdogan, Envo Publishing Co., Bethlehem, Pa., pp. 287–302 (1976).

    Google Scholar 

  18. Vecchio, R. S. and Hertzberg, R. W., A rationale for the apparent anomalous growth behavior of short fatigue cracks, Jovrnal of Engineering Fracture Mechanics 22, No. 6, pp. 1049–1060 (1985).

    Article  Google Scholar 

  19. Sih, G. C., Some basic problems in fracture mechanics and new concepts, International Journal of Engineering Fracture Mechanics 5, No. 2, pp. 365–377 (1973).

    Article  MathSciNet  Google Scholar 

  20. Sih, G. C., The mechanics aspects of ductile fracture, in Proceedings on Continuum Models of Discrete Systems, edited by J. W. Provan, University of Waterloo Press, Canada, pp. 361–386 (1977).

    Google Scholar 

  21. Griffith, A. A., The theory of rupture, First International Congress for Applied Mechanics, Delft, pp. 55–63 (1924).

    Google Scholar 

  22. Irwin, G. R., Analysis of stresses and strains near the end of a crack traversing a plate, Journal of Applied Mechanics 24, pp. 361–364 (1957).

    Google Scholar 

  23. Hilton, P. D. and Hutchinson, J. W., Plastic intensity factors for cracked plates, Journal of Engineering Fracture Mechanics 3, pp. 435–451 (1971).

    Article  Google Scholar 

  24. Hutchinson, J. W., Plastic stress and strain fields at a crack tip, Journal of Mechanics and Physics of Solids 16, pp. 337–342 (1968).

    Article  ADS  Google Scholar 

  25. Ohr, S. M., Horton, J. A. and Chung, S. J., Direct observations of crack tip dislocation behavior during tensile and cyclic deformation, in Defects, Fracture and Fatigue, edited by G. C. Sih and J. W. Provan, Martinus Nijhoff Publishers, The Netherlands, pp. 3–15 (1982).

    Google Scholar 

  26. Orowan, E., Energy criteria of fracture, Welding Research Supplement 34, pp. 157s–160s (1955).

    Google Scholar 

  27. Sih, G. C., Mechanics of Fracture, Introductory Chapters, Vol. I to Vol. VII, edited by G. C. Sih, Martinus Nijhoff Publishing, The Hague (1972–1982).

    Google Scholar 

  28. Sih, G. C. and Chu, R. C., Characterization of material inhomogeneity by stationary values of strain energy density, Journal of Theoretical and Applied Fracture Mechanics 5, No. 3, pp. 151–161 (1986).

    Article  Google Scholar 

  29. Sih, G. C., Michopoulos, J. G. and Chou, S. C., Hygrothermoelasticity, Martinus Nijhoff Publishers, The Netherlands (1986).

    Book  Google Scholar 

  30. Sih, G. C. and Tzou, D. Y., Nonhomogeneous energy dissipation ahead of a slowly growing crack: Part I — Monotonic loading, Institute of Fracture and Solid Mechanics Technical Report IFSM-84-126 (1984).

    Google Scholar 

  31. Barenblatt, G. I., On some basic ideas of theory of equilibrium cracks forming during brittle fracture. Problems of Continuum Mechanics, Society for Industrial and Applied Mathematics, Philadelphia, Pa., pp. 22–38 (1961).

    Google Scholar 

  32. Barenblatt, G. I., The mathematical theory of equilibrium of cracks in brittle fracture, Advances in Applied Mechanics 7, pp. 55–129 (1962).

    Article  MathSciNet  Google Scholar 

  33. Gdoutos, E. E. and Sih, G. C., Crack growth characteristics influenced by load time record, Journal of Theoretical and Applied Fracture Mechanics 2, No. 2, pp. 91–103 (1984).

    Article  Google Scholar 

  34. Sih, G. C. and Chao, C. K., Fatigue initiation in unnotched specimens subjected to monotonic and cyclic loading, Journal of Theoretical and Applied Fracture Mechanics 2, No. 1, pp. 67–74 (1984).

    Article  Google Scholar 

  35. Sih, G. C. and Chao, C. K., Size effect of cylindrical specimens with fatigue cracks, Journal of Theoretical and Applied Fracture Mechanics 1, No. 3, pp. 239–247 (1984).

    Article  Google Scholar 

  36. Ballarini, R., Shah, S. P. and Keer, L. M., Crack growth in cement-based composites, Journal of Engineering Fracture Mechanics 20, No. 3, pp. 433–445 (1984).

    Article  Google Scholar 

  37. Weibull, W., A statistical theory of the strength of metals, Proceedings of the Royal Swedish Institute of Engineering 193, No. 151 (1939).

    Google Scholar 

  38. Sih, G. C. and Madenci, E., Fracture initiation under gross yielding: Strain energy density criterion. Journal of Engineering Fracture Mechanics 78, No. 3, pp. 667–677 (1983).

    Article  Google Scholar 

  39. Carpinteri, A. and Sih, G. C., Damage accumulation and crack growth in bilinear materials with softening: application of strain energy density theory, Journal of Theoretical and Applied Fracture Mechanics 1, No. 2, pp. 145–159 (1984).

    Article  Google Scholar 

  40. Gilbey, H. J., Murphy, G. and Bergman, E.O., Material Testing, McGraw-Hill, New York (1941).

    Google Scholar 

  41. Sih, G. C. and Moyer, Jr., E. T., Path dependent nature of fatigue crack growth, Journal of Engineering Fracture Mechanics 17, No. 3, pp. 269–280, (1983).

    Article  Google Scholar 

  42. Tompkins, B. and Biggs, W. D., Low endurance fatigue in metals and polymers. Part III: Mechanisms of failure. Journal of Material Science 4, pp. 544–553 (1969).

    Article  ADS  Google Scholar 

  43. Gifford, L. N. and Hilton, P. D., Preliminary documentation of Papst-nonlinear fracture and stress analysis by finite elements, NSROC-Preliminary Documentation, Jan. (1981).

    Google Scholar 

  44. Bates, R. C. and Clark, Jr., W. G., Fractography and fracture mechanics, Trans. Quart ASM 62, pp. 380–389 (1969).

    Google Scholar 

  45. Sih, G. C. and Barthelémy, B. M., Mixed mode fatigue crack growth predictions. Engineering Fracture Mechanics No. 3, pp. 439–451 (1980).

    Google Scholar 

  46. Paris, P. C. and Erdogan, F., A critical analysis of crack propagation laws, Trans. ASME Journal of Basic Engineering 85, pp. 528–534 (1963).

    Article  Google Scholar 

  47. Moyer, Jr., E. T. and Sih, G. C., Fatigue analysis of an edge crack specimen hysteresis strain energy density. Journal of Engineering Fracture Mechanics 19, No. 4, pp. 643–652 (1984).

    Article  Google Scholar 

  48. Sih, G. C., Mechanics and physics of energy density and rate of change of volume with surface. Journal of Theoretical and Applied Fracture Mechanics 4, No. 3, pp. 157–173 (1985).

    Article  MathSciNet  Google Scholar 

  49. Sih, G. C., Thermomechanics of solids: nonequilibrium and irreversibility. Journal of Theoretical and Applied Fracture Mechanics 9, No. 3, pp. 175–198 (1988).

    Article  MathSciNet  Google Scholar 

  50. Civallero, M., Mirabile, M. and Sih, G. C., Fracture mechanics in pipeline technology, in Analytical and Experimental Fracture Mechanics, edited by G. C. Sih and M. Mirabile, Sijthoff and Noordhoff Publishers, The Netherlands, pp. 157–174 (1981).

    Chapter  Google Scholar 

  51. Benthem, J. P., Three-dimensional state of stress at the vertex of a quarter-infinite crack in a half-space. Delft University of Technology Report No. 563, The Netherlands (1975).

    Google Scholar 

  52. Smith, C. W., Epstein, J. E. and Olaosebikan, O., Experimental boundary layer studies in three-dimensional fracture problems, Advances in Aerospace structures, Materials and Dynamics, ASME-AO-06, pp. 199–209 (1983).

    Google Scholar 

  53. Sih, G. C. and Lee, Y. D., Review of triaxial crack border stress and energy behavior. Journal of Theoretical and Applied Fracture Mechanics 12, No. 1, pp. 1–17 (1989).

    Article  Google Scholar 

  54. Plane Energy Density Damage Analysis (PEDDA), Institute of Fracture and Solid Mechanics Technical Report IFSM-84-131, December (1984).

    Google Scholar 

  55. Cernocky, E. P. and Krempl, E., A theory of thermoviscoplasticity for uniaxial mechanical and thermal loading. Journal de Méchanique Appliquée 5, No. 3, pp. 293–321 (1981).

    MATH  Google Scholar 

  56. Cemocky, E. P. and Krempl, E., A coupled isotropic theory of thermoplasticity based on total strain and overstress and its prediction in monotonic torsional loading, Journal of Thermal Stresses 4, pp. 69–82 (1981).

    Article  Google Scholar 

  57. Lieu, F. L., Experiments on cooling/heating of aluminum tube under torsion. Institute of Fracture and Solid Mechanics, Lehigh University (1986).

    Google Scholar 

  58. Beghi, M., Bottani, C. E. and Caglioti, G., Temperature variations around the crack tip during a fracture test, Metallurgy and Science Technology 2(3) pp. 102–104 (1984).

    Google Scholar 

  59. Sih, G. C. and Tzou, D. Y., Heating preceded by cooling ahead of crack: macro-damage free zone, Journal of Theoretical and Applied Fracture Mechanics 6, No. 2, pp. 1033–111 (1986).

    Google Scholar 

  60. Sih, G. C., Tzou, D. Y. and Michopoulos, J. G., Secondary temperature fluctuation in cracked 1020 steel specimen loaded monotonically. Journal of Theoretical and Applied Fracture Mechanics 7, No. 2, pp. 79–89 (1987).

    Article  Google Scholar 

  61. Sih, G. C. and Chou, D. M., Thermomechanics of Solids, Elsevier Science Publishers, The Netherlands, (forthcoming)

    Google Scholar 

  62. Tzou, D. Y. and Sih, G. C., Thermal/mechanical interaction of subcriticai crack growth in tensile specimen, Journal of Theoretical and Applied Fracture Mechanics 10, No. 1, pp. 59–72 (1988).

    Article  Google Scholar 

  63. Sih, G. C. and Chao, C. K., Scaling of size/time/temperature associated with damage of uniaxial tensile specimens. Part 1: Progressive damage in uniaxial tensile specimen, pp. 93–108 and Part 2: Progressive damage in uniaxial compressive specimen, pp. 109–119, Journal of Theoretical artd Applied Fracture Mechanics 12, No. 2 (1989).

    Article  Google Scholar 

  64. Yang, W. H., A generalized von Mises criterion for yield and fracture, Journal of Applied Mechanics 47, pp. 297–300 (1980).

    Article  ADS  MATH  Google Scholar 

  65. Yang, W. H., A useful theorem for constructing convex yield functions. Journal of Applied Mechanics 47, pp. 301–303 (1980).

    Article  ADS  MATH  Google Scholar 

  66. Casey, J. and Jahedmotlagh, H., The strength-differential effect in plasticity, International Journal of Solids and Structures 20, pp. 377–393 (1984).

    Article  MATH  Google Scholar 

  67. Sih, G. C., Thermal/Mechanical Interaction Associated with the Micromechanisms of Material Behavior, Institute of Fracture and Solid Mechanics Monograph (1987).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sih, G.C. (1991). Isoenergy density theory: exchange of surface and volume energy. In: Mechanics of Fracture Initiation and Propagation. Engineering Applications of Fracture Mechanics, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3734-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3734-8_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5660-1

  • Online ISBN: 978-94-011-3734-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics