Skip to main content

Strain energy density theory applied to plate-bending and shell problems

  • Chapter
Mechanics of Fracture Initiation and Propagation

Part of the book series: Engineering Applications of Fracture Mechanics ((EAFM,volume 11))

Abstract

When a slender member is stretched gradually with consideration given only to the principal stress in the axial direction, then failure in the global sense is said to occur by yielding if this stress reaches the elastic limit or yield point and by fracturing if the ultimate strength of the material is reached. Material elements within this member, however, are in a multiaxial stress state. Hence, yielding and/or fracture in the local sense or at a point cannot be adequately described by considering just one of the six stress or strain components even if the remote loading is uniaxial. The distinction between localized and global yielding or fracture must be made before selecting a quantity whose critical value will be assigned to determine the load carrying capacity of the member. In principle, this quantity should involve some combination of the stresses or strains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bridgman, P. W., Studies in Large Plastic Flow and Fracture with Special Emphasis on the Effects of Hydrostatic Pressure, First edition, McGraw-Hill Book Co., New York (1952).

    MATH  Google Scholar 

  2. Sih, G. C., Strain energy density factor applied to mixed mode crack problems, Intemational Joumal of Fracture 10, pp. 305–321 (1974).

    Article  Google Scholar 

  3. Sih, G. C., A special theory of crack propagation: methods of analysis and solutions of crack problems, Mechanics of Fracture I, edited by G. C. Sih, Noordhoff International Publishing, Leyden, pp. 21–45 (1973).

    Google Scholar 

  4. Sih, G. C., A three-dimensional strain energy density factor theory of crack propagation: three-dimensional crack problems, Mechanics of Fracture II, edited by G. C. Sih, Noordhoif International Publishing, Leyden, pp. 15–53 (1975).

    Google Scholar 

  5. Linear Fracture Mechanics, edited by G. C. Sih, R. P. Wei and F. Erdogan, Envo Publishing Co., Inc. Lehigh Valley, Pennsylvania (1976).

    Google Scholar 

  6. Erdogan, F. and Sih, G.G., On the crack extension in plates under plane loading and transverse shear, Journal of Basic Engineering 85, pp. 519–627 (1963).

    Article  Google Scholar 

  7. Sih, G. C. and Cha, B. C. K., A fracture criterion for three-dimensional crack problems. Journal of Engineering Firacture Mechanics, pp. 699–723 (1974).

    Google Scholar 

  8. Kipp, M. E. and Sih, G. C., The strain energy density failure criterion applied to notched elastic solids. International Journal of Solids and Structures 2, pp. 153–173 (1975).

    Article  Google Scholar 

  9. Sih, G. C., Discussion on some observations on Sih’s strain energy density approach for fracture prediction by I. Finnie and H. O. Weiss, International Journal of Fracture 10, pp. 279–283 (1974).

    Article  Google Scholar 

  10. Sih, G. C. and Macdonald, B., Fracture mechanics applied to engineering problems — strain energy density fracture criterion, Journal of Engineering Fracture Mechanics 6, pp. 261–265 (1974).

    Article  Google Scholar 

  11. Sih, G. C. and Kipp, M. E., Discussion on fracture under complex stress — the angle crack problem by J. G. Williams and P. D. Ewing, International Journal of Fracture 10, pp. 261–265 (1974).

    Article  Google Scholar 

  12. Hartranft, R. J. and Sih, G. C., An approximate three-dimensional theory of plates with application to crack problems, International Journal of Engineering Science 8, pp. 711–729 (1970).

    Article  MATH  Google Scholar 

  13. Reissner, E., On bending of elastic plates, Quarterly of Applied Mathematics 5, pp. 55–68 (1947).

    MathSciNet  MATH  Google Scholar 

  14. Wang, N. M., Twisting of an elastic plate containing a crack. International Journal of Fracture Mechanics 6, pp. 367–378 (1970).

    Google Scholar 

  15. Sih, G. C., A review of the three-dimensional stress problem for a cracked plate, International Journal of Fracture Mechanics 7, pp. 39–61 (1971).

    Article  Google Scholar 

  16. Benthem, J. P., Three-dimentional State of Stress at the Vertex of a Quarter-Infinite Crack in a Half-Space, Delft University Report No. 563 (1975).

    Google Scholar 

  17. Sih, G. C., Bending of a cracked plate with an arbitrary stress distribution across the thickness. Journal of Engineering for Industry 92, pp. 350–356 (1970).

    Article  Google Scholar 

  18. Rubayi, N. A. and Ved, R., Photoelastic analysis of a thick square plate containing central crack and loaded by pure bending. International Journal of Fracture 12, pp. 435–451 (1976).

    Google Scholar 

  19. Hartranft, R. J. and Sih, G. C., The use of eigenfunction expansions in the general solution of three-dimensional crack problems. Journal of Mathematics and Mechanics 19, pp. 123–138 (1969).

    MathSciNet  MATH  Google Scholar 

  20. Villarreal, G., Sih, G. C. and Hartranft, R. J., Photoelastic investigation of a thick plate with a transverse crack. Journal of Applied Mechanics 42, pp. 9–14 (1975).

    Article  ADS  Google Scholar 

  21. Ang, D. D., Folias, E. S. and Williams, M. L., The bending stress in a cracked plate on an elastic foundation, Journal of Applied Mechanics 30, pp. 245–251 (1964).

    Article  ADS  Google Scholar 

  22. Sih, G. C. and Setzer, D. E., Discussion of the bending stress in a cracked plate on an elastic foundation. Journal of Applied Mechanics, 31, pp. 365–367 (1964).

    Article  ADS  Google Scholar 

  23. Folias, E. S., The stresses in a cracked spherical shell, Journal of Mathematics and Physics 44, pp. 164–176 (1965).

    MathSciNet  Google Scholar 

  24. Knowles, J. K. and Wang, N. M., On the bending of an elastic plate containing a crack, Journal of Mathematics and Physics 39, pp. 223–236 (1960).

    MathSciNet  Google Scholar 

  25. Erdogan, F. and Kibler, J. J., Cylindrical and spherical shells with cracks. International Journal of Fracture Mechanics 5, pp. 229–237 (1969).

    Article  Google Scholar 

  26. Sih, G. C. and Dobreff, P. S., Crack-like imperfections in a spherical shell, Glasgow Mathematical Journal 12, pp. 65–88 (1971).

    Article  MATH  Google Scholar 

  27. Folias, E. S., An axial crack in a pressurized cylindrical shell, International Journal of Fracture Mechanics 1, pp. 104–113 (1965).

    Google Scholar 

  28. Folias, E. S., A circumferential crack in a pressurized cylindrical shell, International Journal of Fracture Mechanics 3, pp. 1–12 (1967).

    Article  Google Scholar 

  29. Copley, L. G. and Sanders, J. L., A longitudinal crack in a cylindrical shell under internal pressure. International Journal of Fracture Mechanics 5, pp. 113–131 (1969).

    Article  Google Scholar 

  30. Erdogan, F. and Ratwani, M., A circumferential crack in a cylindrical shell under torsion, International Journal of Fracture Mechanics 8, pp. 87–95 (1972).

    Article  Google Scholar 

  31. Reissner, E., On some problems in shell theory, Structural Mechanics, Proceedings First Symposium on Naval Structural Mechanics, pp. 74–113 (1958).

    Google Scholar 

  32. Sih, G. C. and Hagendorf, H. C., A new theory of spherical shells with cracks, Thin-tShell Structures: Theory, Experiment, and Design, Edited by Fung, Y. C. and Sechler, E. E., Prentice-Hall, New Jersey, pp. 519–545 (1974).

    Google Scholar 

  33. Naghdi, P. M., On the theory of thin elastic shells. Quarterly Applied Mathematics 54, pp. 369–380 (1957).

    MathSciNet  Google Scholar 

  34. Reissner, E., On a variational theorem in elasticity, Journal of Mathematics and Physics 29, pp. 90–95 (1950).

    MathSciNet  MATH  Google Scholar 

  35. Kalnins, A., On the derivation of a general theory of elastic shells, Indian Journal of Mathematics 9, pp. 381–425 (1967).

    MATH  Google Scholar 

  36. Novozhilov, V. V., Thin Shell Theory, Second edition, Noordhoff, Groningen, Netherlands (1964).

    Google Scholar 

  37. Hartranft, R. J. and Sih, G. C., Effect of plate thickness on the bending stress distribution around through cracks. Journal of Mathematics and Physics 47, pp. 276–291 (1968).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sih, G.C. (1991). Strain energy density theory applied to plate-bending and shell problems. In: Mechanics of Fracture Initiation and Propagation. Engineering Applications of Fracture Mechanics, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3734-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3734-8_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5660-1

  • Online ISBN: 978-94-011-3734-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics