Skip to main content

Spatially Distributed Modeling: Conceptual Approach to Runoff Prediction

  • Chapter
Recent Advances in the Modeling of Hydrologic Systems

Part of the book series: NATO ASI Series ((ASIC,volume 345))

Abstract

The relationship between perceptual models, conceptual models and physically based distributed models of hydrological processes is analyzed. It is shown that physically-based models must be considered as conceptual models at the scale at which they are used. A simplified distributed model (TOP MODEL) that can take account of heterogeneity in catchment topography and soils is introduced. A likelihood based procedure for estimating the uncertainties associated with the predictions of complex distributed models is described.

“As scientists we are intrigued by the possibility of assembling our concepts and bits of knowledge into a neat package to show that we do, after all, understand our science and its complex interrelated phenomena.” (W. M. Kohler, 1969)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abbott, M. B., J. C. Bathurst, J. A. Cunge, P. E. O’Connell, and J. Rassmussen: 1986a, ‘An Introduction to the European Hydrological System - Systeme Hydrologique Europeen, “SHE”. 1. History and Philosophy of a Physically-Based, Distributed Modelling System,’ J. Hydrology 87, 45–59.

    Article  Google Scholar 

  • Abbott, M. B., J. C. Bathurst, J. A. Cunge, P. E. O’Connell, and J. Rassmussen: 1986a, ‘An Introduction to the European Hydrological System - Systeme Hydrologique Europeen, “SHE”. 2. Structure of a Physically-Based Distributed Modelling System,’ J. Hydrology 87, 61–77.

    Article  Google Scholar 

  • Bathurst, J. C.: 1986a, ‘Physically-Based Distributed Modelling of an Upland Catchment using the Systeme Hydrologique Europeen,’ J Hydrology 87, 79–102.

    Article  Google Scholar 

  • Bathurst, J. C.: 1986b, ‘Sensitivity Analysis of the Systeme Hydrologique Europeen for an Upland Catchment,’ J. Hydrology 87, 103–123.

    Article  Google Scholar 

  • Beck, M. B.: 1983, ‘Uncertainty, System Identification and the Prediction of Water Quality,’ in M. B. Beck, and G. van Straten (eds.), Uncertainty and Forecasting of Water Quality, 3–68, Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Beven, K. J.: 1977, ‘Hillslope Hydrographs by the Finite Element Method,’ Earth Surface Processes 2, 13–28.

    Article  Google Scholar 

  • Beven, K. J.: 1978, ‘The Hydrological Response of Headwater and Sideslope Areas,’ Hydrological Sciences Bulletin 23(4), 419–437.

    Article  Google Scholar 

  • Beven, K. J.: 1979, ‘On the Generalised Kinematic Routing Method,’ Water Resources Research 15(5), 1238–1242.

    Article  Google Scholar 

  • Beven, K. J.: 1982, ‘On Subsurface Stormflow: An Analysis of Response Times,’ Hydrological Sciences J. 4, 505–521.

    Article  Google Scholar 

  • Beven, K. J.: 1984, ‘Infiltration into a Class of Vertically Non-uniform Soils,’ Hydrological Sciences J. 29, 425–434.

    Article  Google Scholar 

  • Beven, K. J.: 1985, ‘Distributed Models,’ in M. G. Anderson, and T. P. Burt (eds.), Hydrological Forecasting, 405–435, Wiley.

    Google Scholar 

  • Beven, K. J.: 1986a, ‘Hillslope Runoff Processes and Flood Frequency Characteristics,’ in A. D. Abrahams (ed.), Hillslope Processes, 187–202, Allen and Unwin, Boston.

    Google Scholar 

  • Beven, K. J.: 1986b, ‘Runoff Production and Flood Frequency in Catchments of Order N: An Alternative Approach,’ in V. K. Gupta, I. Rodriguez-Iturbe, and E. F. Wood (eds.), Scale Problems in Hydrology, 107–131, Reidel, Dordrecht.

    Chapter  Google Scholar 

  • Beven, K. J.: 1987a, ‘Towards a New Paradigm in Hydrology, Water for the Future: Hydrology in Perspective,’ LASH 164, 393–403.

    Google Scholar 

  • Beven, K. J.: 1987b, ‘Towards the Use of Catchment Geomorphology in Flood Frequency Predictions,’ Earth Surf. Process. Landf 12, 69–82.

    Article  Google Scholar 

  • Beven, K. J.: 1989, ‘Changing Ideas in Hydrology: The Case of Physically-based Models,’ J Hydrology 195, 157–172.

    Article  Google Scholar 

  • Beven, K. J., and M. J. Kirkby: 1979, ‘A Physically-based Variable Contributing Area Model of Basin Hydrology,’ Hydrological Sciences Bulletin 24(1), 43–69.

    Article  Google Scholar 

  • Beven, K. J., and P. E. O’Connell: 1982, ‘On the Role of Physically-based Models in Hydrology,’ Institute of Hydrology Report No. 81, Wallingford.

    Google Scholar 

  • Beven, K. J., and E. F. Wood: 1983, ‘Catchment Geomorphology and the Dynamics of Runoff Contributing Areas,’ J. Hydrology 65, 139–158.

    Article  Google Scholar 

  • Beven, K. J., M. J. Kirkby, N. Schoffield, and A. Tagg: 1984, ‘Testing a Physically-based Flood Forecasting Model (TOPMODEL) for Three UK Catchments,’ J Hydrology 69, 119–143.

    Article  Google Scholar 

  • Beven, K. J., and R. T. Clarke: 1986, ‘On the Variation of Infiltration into a Homogeneous Soil Matrix Containing Macropores,’ Water Resources Research 22, 383–388

    Article  Google Scholar 

  • Beven, K. J., A. Calver, and E. M. Morris: 1987, ‘The Institute of Hydrology Distributed Model,’ Institute of Hydrology Report No. 98, Wallingford.

    Google Scholar 

  • Binley, A. M., J. Elgy, and K. J. Beven: 1989a, ‘A Physically-based Model of Heterogeneous Hillslopes. I. Runoff Production,’ Water Resources Research 25(6), 1219–1226.

    Article  Google Scholar 

  • Binley, A. M., K. J. Beven, and J. Elgy: 1989b, ‘A Physically-based Model of Heterogeneous Hillslopes. II. Effective Hydraulic Conductivities,’ Water Resources Research 25(6), 1227–1233.

    Article  Google Scholar 

  • Blackie, J. R., and C. W. O. Eeles: 1985, ‘Lumped Catchment Models,’ in M. G. Anderson, and T. P. Burt (eds.), Hydrological Forecasting, 311–346, Wiley.

    Google Scholar 

  • Crabtree, R. W, and S. T. Trudgill: 1985, ‘Hillslope Hydrochemistry and Stream Response on a Wood, Permeable Bedrock: The Role of Stemflow,’ J. Hydrology 80, 161–178.

    Article  Google Scholar 

  • Dooge, J. C. I.: 1977, ‘Problems and Methods of Rainfall-Runoff Modelling,’ in T. A. Ciriani, U. Maione, and J. R. Wallis (eds.), Mathematical Models for Surface Water Hydrology, 71–108, Wiley.

    Google Scholar 

  • Emmett, W W: 1978, ‘Overland Flow,’ in M. J. Kirkby (ed.), Hillslope Hydrology, 145–176, Wiley.

    Google Scholar 

  • Fleming, G.: 1975, ‘Computer Simulation Techniques in Hydrology,’ Elsevier.

    Google Scholar 

  • Freeze, R. A.: 1972, ‘Role of Subsurface Flow in Generating Surface Runoff. 2. Upstream Source Areas,’ Water Resources Research 8, 1272–1283.

    Article  Google Scholar 

  • Freeze, R. A., and R. L. Harlan: 1969, ‘Blueprint for a Physically-based Digitally Simulated Hydrologic Response Model,’ J. Hydrology 9, 237–258.

    Article  Google Scholar 

  • Hewlett, J. D.: 1974, “Comments on Letters Relating to ‘Role of Subsurface Flow in Generating Surface Runoff. 2. Upstream Source Areas’ by R. Allen Freeze,” Water Resources Research 10, 605–607.

    Article  Google Scholar 

  • Hillel, D.: 1988, ‘Unstable Flow in Layered Soils: A Review,’ Hydrological Processes 1, 143–147.

    Article  Google Scholar 

  • Hornberger, G.M., and R. C. Spear: 1981, ‘An Approach to the Preliminary Analysis of Environmental Systems,’ J. Environ. Manage. 12, 7–18.

    Google Scholar 

  • Hornberger, G. M., K. J. Beven, B. J. Cosby, and D. E. Sappington: 1985, ‘Shenandoah Watershed Study: Calibration of a Topography-Based, Variable Contributing Area Hydrological Model to a Small Forested Catchment,’ Water Resources Research 21, 1841–1850.

    Article  Google Scholar 

  • Huff, D. D., R. V. O’Neill, W. R. Emanuel, J. W. Elwood, and J. D. Newbold: 1982, ‘Flow Variability and Hillslope Hydrology,’ Earth Surf. Process. Landf. 7, 91–94.

    Article  Google Scholar 

  • Kirkby, M. J.: 1969, ‘Infiltration, Throughflow and Overland Flow,’ in R. J. Chorley (ed.), Water Earth and Man, 215–228, Methuen.

    Google Scholar 

  • Kirkby, M. J.: 1976a, ‘Tests of the Random Network Model and its Application to Basin Hydrology,’ Earth Surf. Process. 1, 197–212.

    Article  Google Scholar 

  • Kirkby, M. J.: 1976b, ‘Hydrograph Modelling Strategies,’ in R. Peel, M. Chisholm, and P. Haggett (eds.), Processes in Physical and Human Geography, Heinemann.

    Google Scholar 

  • Loague, K. M., and R. A. Freeze: 1985, ‘A Comparison of Rainfall-Runoff Modelling Techniques on Small Upland Catchments,’ Water Resources Research 21, 229–248.

    Article  Google Scholar 

  • Moore, I. D., S. M. Mackay, P. J. Wallbrink, G. J. Burch, and E. M. O’Loughlin: 1986, ‘Hydrologic Characteristics and Modelling of a Small Forested Catchment in Southeastern New South Wales. Pre-logging Condition,’ J. Hydrology 83, 307–335.

    Article  Google Scholar 

  • O’Loughlin, E. M.: 1981, ‘Saturation Regions in Catchments and their Relations to Soil and Topographic Properties,’ J. Hydrology 53, 229–246.

    Article  Google Scholar 

  • O’Loughlin, E. M.: 1986, ‘Prediction of Surface Saturation Zones in Natural Catchments by Topographic Analysis,’ Water Resources Research 22, 794–804.

    Article  Google Scholar 

  • Sharma, M. L., R. J. Luxmoore, R. DeAngelis, R. C. Ward, and G. T. Yeh: 1987, ‘Subsurface Water Flow Simulated for Hillslopes with Spatially Dependent Soil Hydraulic Characteristics,’ Water Resources Research 28, 1523–1530.

    Article  Google Scholar 

  • Sivapalan, M., K. Beven, and E. F. Wood: 1987, ‘On Hydrological Similarity: II. A Scaled Model of Storm Runoff Production,’ Water Resources Research 23(12), 2266–2278.

    Article  Google Scholar 

  • Stengers, I., and I. Prigogine: 1984, Order Out of Chaos, Heinemann, London.

    Google Scholar 

  • Stephenson, G. R., and R. A. Freeze: 1974, ‘Mathematical Simulation of Subsurface Flow Contributions to Snowmelt Runoff, Reynolds Creek Watershed, Idaho,’ Water Resources Research 10, 284–298.

    Article  Google Scholar 

  • Surkan, A. J.: 1969, ‘Synthetic Hydrographs: Effects of Network Geometry,’ Water Resources Research 5, 112–128.

    Article  Google Scholar 

  • Wilson, C. B., J. B. Valdes, and I. Rodriguez-Iturbe: 1979, ‘On the Influence of the Spatial Distribution of Rainfall on Storm Runoff,’ Water Resources Research 15, 321.

    Article  Google Scholar 

  • Wood, E. F., M. Sivapalan, K. Beven, and L. Band: 1988, ‘Effects of Spatial Variability and Scale with Implications to Hydrological Modelling,’ J. Hydrology 102, 29–47.

    Article  Google Scholar 

  • Yeh, W. W-G.: 1986, ‘Review of Parameter Identification Procedures in Groundwater Hydrology: The Inverse Problem,’ Water Resources Research 22, 95–108.

    Article  Google Scholar 

  • Zavlaysky, D., and G. Sinai: 1981, ‘Surface Hydrology (5 parts),’ J. Hydraul. Div., ASCE 107, 1–93.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Beven, K. (1991). Spatially Distributed Modeling: Conceptual Approach to Runoff Prediction. In: Bowles, D.S., O’Connell, P.E. (eds) Recent Advances in the Modeling of Hydrologic Systems. NATO ASI Series, vol 345. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3480-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3480-4_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5538-3

  • Online ISBN: 978-94-011-3480-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics