Skip to main content

The effects of changes in habitat structure during succession in terrestrial communities

  • Chapter
Habitat Structure

Part of the book series: Population and Community Biology Series ((PCBS,volume 8))

Abstract

Succession is one of the most widespread and readily observed ecological phenomena. One of the many characteristic features of succession is a change in the physical structure of the habitat, concomitant with and generally the result of biotic processes. Directional changes in habitat structure occur in terrestrial and aquatic habitats, although the magnitude and the time scale over which they take place are variable. Thus, in many examples of primary successions in extreme habitats (e.g., tundra), changes may be subtle and occur only slowly (Olson, 1958; Morrison and Yarranton, 1973), while in many biomes the overall change in habitat structure may be dramatic, such as the succession from grassland to forest, although climate and nature of the disturbance make the time scale highly variable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Andersen, D. C., MacMahon, J. A. and Wolfe, M. L. (1980) Herbivorous mammals along a montane sere: community structure and energetics. J. Mammal., 61, 500–19.

    Google Scholar 

  • Auclair, A. N. and Goff, F. G. (1971) Diversity relations of upland forests in the western great lakes area. Am. Nat., 105, 499–528.

    Google Scholar 

  • Barkman, J. J. (1979) The investigation of vegetation texture and structure. In The Study of Vegetation (ed. M. J. A. Werger), Junk, The Hague, pp. 125–60.

    Google Scholar 

  • Bazzaz, F. A. (1968) Succession on abandoned fields in the Shawnee Hills, southern Illinois. Ecology, 49, 924–36.

    Google Scholar 

  • Bazzaz, F. A. (1979) The physiological ecology of plant succession. Ann. Rev. Ecol. Syst., 10, 351–71.

    Google Scholar 

  • Beckwith, S. L. (1954) Ecological succession on abandoned farm lands and its relation to wildlife management. Ecol. Monogr., 24, 349–76.

    Google Scholar 

  • Billings, W. D. (1938) The structure and development of old field shortleaf pine stands and certain associated physical properties of the soil. Ecol. Monogr., 8, 437–99.

    Google Scholar 

  • Brereton, A. J. (1971) The structure of the species populations in the initial stages of salt marsh succession. J. Ecol., 59, 321–38.

    Google Scholar 

  • Brown, V. K. (1985) Insect herbivores and plant succession. Oikos, 44, 17–22.

    Google Scholar 

  • Brown, V. K. (1986) Life cycle strategies and plant succession. In The Evolution of Insect Life Cycles (eds F. Taylor and R. Karban), Springer-Verlag, New York, pp. 105–24.

    Google Scholar 

  • Brown, V. K. (1990) Insect herbivores, herbivory and plant succession. In Insect Life Cycles: Genetics, Evolution and Co-ordination (ed. F. Gilbert), Springer-Verlag, London.

    Google Scholar 

  • Brown, V. K., Gibson, C. W. D. and Sterling, P. H. (1990) The mechanisms controlling insect diversity in calcicolous grasslands. In Calcareous Grasslands — Ecology and Conservation (eds S. Hillier, D. Wells and D. Walton), Bluntisham Books, Huntingdon (in press).

    Google Scholar 

  • Brown, V. K., Hendrix, S. D. and Dingle, H. (1987) Plants and insects in early old-field succession: comparison of an English site and an American site. Biol. J. Linn. Soc., 31, 59–74.

    Google Scholar 

  • Brown, V. K. and Hyman, P. S. (1986) Successional communities of plants and phytophagous Coleoptera. J. Ecol., 74, 963–75.

    Google Scholar 

  • Brown, V. K. and Hyman, P. S. Weevils and plants: Characteristics of successional communities. Proc. Ent. Soc. Wash, (in press).

    Google Scholar 

  • Brown, V. K., Jepsen, M. and Gibson, C. W. D. (1988) Insect herbivory: effects on early old field succession. Oikos, 52, 293–302.

    Google Scholar 

  • Brown, V. K. and Southwood, T. R. E. (1983) Trophic diversity, niche breadth and generation times of exopterygote insects in a secondary succession. Oecologia, 56, 220–5.

    Google Scholar 

  • Brown, V. K. and Southwood, T. R. E. (1987) Secondary succession: patterns and strategies. In Colonization, Succession and Stability (eds M. J. Crawley, P. J. Edwards and A. J. Gray), Blackwell Scientific Publications, Oxford, pp. 315–337.

    Google Scholar 

  • Brunsting, A. M. H. (1982) The influence of the dynamics of a population of herbivorous beetles on the development of vegetational patterns in a heathland system. Proc. 5th Int. Symp. Insect—Plant Relationships, Wageningen. Pudoc, Wageningen, pp. 215–23.

    Google Scholar 

  • Connell, J. H. and Slayter, R. O. (1977) Mechanisms of succession in natural communities and their role in community stability and organization. Am. Nat., 111, 1119–44.

    Google Scholar 

  • Cooper, W. S. (1931) A third expedition to Glacier Bay, Alaska. Ecology, 12, 61–95.

    Google Scholar 

  • Cooper, W. S. (1939) A fourth expedition to Glacier Bay, Alaska. Ecology, 20, 130–55.

    Google Scholar 

  • Crocker, R. L. and Major, J. (1955) Soil development in relation to vegetation and surface age at Glacier Bay, Alaska. J. Ecol., 43, 427–48.

    Google Scholar 

  • Dahlman, R. C. and Kucera, C. L. (1965) Root productivity and turnover in a native prairie. Ecology, 46, 84–7.

    Google Scholar 

  • Drury, W. H. and Nisbet, I. C. T. (1973) Succession. J. Arnold Arbor., 54, 331–68.

    Google Scholar 

  • Duffey, E. (1962) A population study of spiders in limestone grassland. Description of study area, sampling methods and population characteristics. J Anim. Ecol., 31, 571–99.

    Google Scholar 

  • Egler, F. E. (1954) Vegetation science concepts. I. Initial floristic composition, a factor in old field vegetation development. Vegetatio, 4, 412–17.

    Google Scholar 

  • Evans, I. M. (1988) Leguminous Herbs and Their Insect Herbivores: Interaction During Early Succession. PhD thesis, University of London.

    Google Scholar 

  • Feeny, P. P. (1970) Seasonal changes in oak leaf tannins and nutrients as a cause of spring feeding by winter moth caterpillars. Ecology, 51, 565–81.

    Google Scholar 

  • Feeny, P. P. (1976) Plant apparency and chemical defense. In Biochemical Interactions Between Plants and Insects (eds J. Wallace and R. Mansell), Recent Advances in Phytochemistry, 10, 1–40.

    Google Scholar 

  • Gibson, C. W. D., Brown, V. K. and Jepsen, M. (1987a) Relationships between the effects of insect herbivory and sheep grazing on seasonal changes in an early successional plant community. Oecologia, 71, 245–53.

    Google Scholar 

  • Gibson, C. W. D., Dawkins, H. C., Brown, V. K. and Jepsen, M. (1987b) Spring grazing by sheep: effects on seasonal changes during early old field succession. Vegetatio, 70, 33–43.

    Google Scholar 

  • Gibson, C. W. D., Watt, T. A. and Brown, V. K. (1987c) The use of sheep grazing to recreate species-rich grassland from abandoned arable land. Biol. Conserv., 42, 165–83.

    CAS  Google Scholar 

  • Gimingham, C. H. (1960) The biological flora of the British Isles: Calluna vulgaris (L.) Hull. J. Ecol., 48, 455–83.

    Google Scholar 

  • Gimingham, C. H. (1972) Ecology of Heathlands. Chapman and Hall, London.

    Google Scholar 

  • Gimingham, C. H., Chapman, S. B. and Webb, N. R. (1979) European heathlands. In Ecosystems of the World Vol. 9A. Heathlands and Related Dwarf Shrublands (éd. R. L. Specht), Elsevier, Amsterdam, pp. 365–413.

    Google Scholar 

  • Godfray, H. C. J. (1985) The absolute abundance of leaf miners on plants of different successional stages. Oikos, 45, 17–25.

    Google Scholar 

  • Greig-Smith, P. (1983) Quantitative Plant Ecology. 3rd edn. Butterworth, London.

    Google Scholar 

  • Grubb, P. J. (1977) The maintenance of species richness in plant communities: the importance of the regeneration niche. Biol. Rev., 52, 107–45.

    Google Scholar 

  • Hansson, A. C. and Andren, O. (1986) Below ground plant production in a perennial grass ley (Festuca pratensis Huds.) assessed with different methods. J. Appl. Ecol., 23, 657–66.

    Google Scholar 

  • Hendrix, S. D., Brown, V. K. and Dingle, H. (1988) Arthropod guild structure during early old field succession in a New and Old World site. J. Anim. Ecol., 57, 1053–65.

    Google Scholar 

  • Hobbs, R. J. and Mooney, H. A. (1983) Community and population dynamics of serpentine grassland annuals in relation to gopher disturbance. Oecologia, 67, 342–51.

    Google Scholar 

  • Horn, H. S. (1974) The ecology of secondary succession. Ann. Rev. Ecol. Syst., 5, 25–37.

    Google Scholar 

  • Hurlburt, S. H. (1971) The nonconcept of species diversity: a critique and alternative parameters. Ecology, 52, 578–86.

    Google Scholar 

  • Huston, M. and Smith, T. (1987) Plant succession: life history and competition. Am. Nat., 130, 168–98.

    Google Scholar 

  • Hutchinson, K. J. and King, K. L. (1980) The effects of sheep stocking level on invertebrate abundance, biomass and energy utilization in a temperate sown grassland. J. Appl. Ecol., 17, 369–87.

    Google Scholar 

  • Jalloq, M. C. (1975) The invasion of molehills by weeds as a possible factor in the degeneration of reseeded pasture. 1. The buried viable seed population of molehills from four reseeded pastures in West Wales. J. Appl. Ecol., 12, 643–57.

    Google Scholar 

  • James, F. C. (1971) Ordinations of habitat relationships among breeding birds. Wilson Bull., 83, 215–36.

    Google Scholar 

  • Karr, J. R. (1968) Habitat and avian diversity on strip-mined land in east Central Illinois. Condor, 70, 348–57.

    Google Scholar 

  • Lawton, J. H. (1978) Host-plant influence on insect diversity; the effects of space and time. In Diversity of Insect Faunas (eds L. A. Mound and N. Waloff), Symposium of the Royal Entomological Society of London, 9. Blackwell Scientific Publications, Oxford, pp. 105–25.

    Google Scholar 

  • Loucks, O. L. (1970) Evolution of diversity, efficiency, and community stability. Am. Zool., 10, 17–25.

    PubMed  CAS  Google Scholar 

  • Lovell, P. H. and Lovell, P. J. (1985) The importance of plant form as a determining factor in competition and habitat exploitation. In Studies of Plant Demography (ed. J. White), Academic Press, London, pp. 209–21.

    Google Scholar 

  • Macan, T. T. (1977) Changes in the vegetation of a moorland fishpond in twenty-one years. J. Ecol., 65, 95–106.

    Google Scholar 

  • MacArthur, R. H. and MacArthur, J. W. (1961) On bird species diversity. Ecology, 42, 594–8.

    Google Scholar 

  • Margalef, D. R. (1967) Some concepts relative to the organization of plankton. Oceanogr. Mar. Biol. Ann. Rev., 5, 257–89.

    Google Scholar 

  • Margalef, D. R. (1968) Perspectives in Ecological Theory. University of Chicago Press, Chicago.

    Google Scholar 

  • Miekle, H. W. (1977) Mound building by pocket gophers (Geomyidae): their impact on soils and vegetation in N. America. J. Biogeogr., 4, 171–80.

    Google Scholar 

  • Miles, J. (1979) Vegetation Dynamics. Chapman and Hall, London.

    Google Scholar 

  • Miyaji, K. E. and Tagawa, H. (1973) A life table of the leaves of Tilia japonica Simonkai. Rep. Ebino Biol. Lab. Kyushu Univ., 1, 98–108.

    Google Scholar 

  • Mooney, H. M. and Gulmon, S. L. (1982) Constraints on leaf structure and function in reference to herbivory. Bioscience, 32, 198–206.

    CAS  Google Scholar 

  • Moran, V. C. and Southwood, T. R. E. (1982) The guild composition of arthropod communities in trees. J. Anim. Ecol., 51, 289–306.

    Google Scholar 

  • Morris, M. G. (1967) Differences between the invertebrate faunas of grazed and ungrazed chalk grassland. I. Responses of some phytophagous insects to cessation of grazing. J. Appl. Ecol., 4, 459–74.

    Google Scholar 

  • Morris, M. G. (1968) Differences between the invertebrate faunas of grazed and ungrazed chalk grassland. II. The fauna of sample turves. J. Appl. Ecol., 5, 601–11.

    Google Scholar 

  • Morris, M. G. (1978) Grassland management and invertebrate animals — a selective review. Sci. Proc. R. Dubl. Soc., Series A, 6, 247–57.

    Google Scholar 

  • Morris, M. G. (1979) The effects of cutting on grassland Hemiptera: a preliminary report. Sci. Proc. R. Dubl. Soc., Series A, 6, 167–77.

    Google Scholar 

  • Morris, M. G. (1981a) Responses of grassland invertebrates to management by cutting. III. Adverse effects on Auchenorrhyncha. J. Appl. Ecol., 18, 107–23.

    Google Scholar 

  • Morris, M. G. (1981b) Responses of grassland invertebrates to management by cutting. IV. Positive responses of Auchenorrhyncha. J. Appl. Ecol., 18, 763–71.

    Google Scholar 

  • Morris, M. G. and Rispin, W. E. (1987) Abundance and diversity of the Coleopterous fauna of a calcareous grassland under different cutting regimes. J. Appl. Ecol., 24, 451–65.

    Google Scholar 

  • Morse, D. R., Lawton, J. H., Dodson, M. M. and Williamson, M. H. (1985) Fractal dimension of vegetation and the distribution of arthropod body lengths. Nature 314, 731–2.

    Google Scholar 

  • Morrison, R. A. and Yarranton, G. A. (1973) Diversity, richness and evenness during a primary sand dune succession at Grand Bend, Ontario. Can. J. Bot., 51, 2401–11.

    Google Scholar 

  • Murdoch, W. W., Evans, F. C. and Peterson, C. H. (1972) Diversity and pattern in plants and insects. Ecology, 53, 819–28.

    Google Scholar 

  • Mushinsky, H. R. (1985) Fire and the Florida sandhill herpetofaunal community: with special attention to responses of Cnemidophorus sexlineatus. Herpetologica, 41, 333–42.

    Google Scholar 

  • Nagel, H. G. (1979) Analysis of invertebrate diversity in a mixed prairie ecosystem. J. Kans. Ent. Soc., 52, 777–86.

    Google Scholar 

  • Niering, W. A. and Goodwin, R. H. (1974) Creation of relatively stable shrub-lands with herbicides: arresting ‘succession’ on rights-of-way and pastureland. Ecology, 55, 784–95.

    Google Scholar 

  • Odum, E. P. (1969) The strategy of ecosystem development. Science, NY, 164, 262–70.

    CAS  Google Scholar 

  • Olson, J. S. (1958) Rates of succession and soil changes on southern Lake Michigan sand dunes. Bot. Gaz., 119, 125–70.

    CAS  Google Scholar 

  • Peet, R. K. (1981) Changes in biomass and production during secondary forest succession. In Forest Succession: Concepts and Application (eds D. C. West, H. H. Shugart and D. B. Botkin), Springer-Verlag, New York, pp. 324–38.

    Google Scholar 

  • Peet, R. K. and Christensen, N. L. (1980) Succession: a population process. Vegetatio, 43, 131–40.

    Google Scholar 

  • Pickett, S. T. A. (1976) Succession: an evolutionary interpretation. Am. Nat., 110, 107–19.

    Google Scholar 

  • Pielou, E. C. (1966) Species—diversity and pattern diversity in the study of ecological succession. J. Theor. Biol., 10, 370–83.

    PubMed  CAS  Google Scholar 

  • Prestidge, R. A. and McNeill, S. (1983) The role of nitrogen in the ecology of grassland Auchenorrhyncha. In Nitrogen as an Ecological Factor (eds J. A. Lee, S. McNeill and I. M. Rorison), British Ecological Society Symposium No. 22. Blackwell Scientific Publications, Oxford, pp. 257–81.

    Google Scholar 

  • Purvis, G. and Curry, J. P. (1980) Successional changes in the arthropod fauna of a new ley pasture established on previously cultivated arable land. J. Appl. Ecol., 17, 309–21.

    Google Scholar 

  • Reader, P. M. and Southwood, T. R. E. (1981) The relationship between palatability to invertebrates and the successional status of a plant. Oecologia, 51, 271–5.

    Google Scholar 

  • Recher, H. F. (1969) Bird species diversity and habitat diversity in Australia and North America. Am. Nat., 103, 75–80.

    Google Scholar 

  • Rhoades, D. F. and Cates, R. G. (1976) Towards a general theory of plant antiherbivore chemistry. In Biochemical Interactions between Plants and Insects (eds J. Wallace and R. Mansell), Recent Adv. Phytochem., 101, 168–213.

    Google Scholar 

  • Root, R. B. (1973) Organization of a plant—arthropod association in simple and diverse habitats: the fauna of collards (Brassica oleracea). Ecol. Monogr., 43, 95–104.

    Google Scholar 

  • Rosenzweig, M. L. and Winakur, J. (1966) Population ecology of desert rodent communities: habitats and environmental complexity. Ecology, 50, 558–72.

    Google Scholar 

  • Roux, E. R. and Warren, M. (1963) Plant succession of abandoned fields in central Oklahoma and in the Transvaal Highfeld. Ecology, 44, 576–9.

    Google Scholar 

  • Shafi, M. I. and Yarranton, G. A. (1973) Diversity, floristic richness and species evenness during a secondary (post-fire) succession. Ecology, 54, 897–902.

    Google Scholar 

  • Southwood, T. R. E. (1962) Migration of terrestrial arthropods in relation to habitat. Biol. Rev., 37, 171–214.

    Google Scholar 

  • Southwood, T. R. E. (1977) Habitat, the templet for ecological strategies. J. Anim. Ecol., 46, 337–65.

    Google Scholar 

  • Southwood, T. R. E., Brown, V. K. and Reader, P. M. (1979) The relationships of plant and insect diversities in succession. Biol. J. Linn. Soc., 12, 327–48.

    Google Scholar 

  • Southwood, T. R. E., Brown, V. K. and Reader, P. M. (1983) Continuity of vegetation in space and time: a comparison of insects’ habitat templet in different successional stages. Res. Pop. Ecol., Suppl. 3, 61–14.

    Google Scholar 

  • Southwood, T. R. E., Brown, V. K. and Reader, P. M. (1986a) Leaf palatability, leaf expectancy and herbivore damage. Oecologia, 70, 544–8.

    Google Scholar 

  • Southwood, T. R. E., Brown, V. K., Reader, P. M. and Green, E. E. (1986b) The use of different stages of a secondary succession by birds. Bird Study, 33, 159–63.

    Google Scholar 

  • Southwood, T. R. E., Brown, V. K., Reader, P. M. and Mason, E. (1988) Some ecological characteristics of the primary trophic level of a secondary succession. Proc. R. Soc. Lond. B., 234, 11–44.

    Google Scholar 

  • Spenceley, A. P. (1973) The effect of stratification of vegetation on the analysis of successional data. J. Ecol., 61, 767–73.

    Google Scholar 

  • Stinson, C. S. A. and Brown, V. K. (1983) Seasonal changes in the architecture of natural plant communities and its relevance to insect herbivores. Oecologia, 56, 67–9.

    Google Scholar 

  • Strong, D. R. Jr and Levin, D. A. (1979) Species richness of plant parasites and growth form of their host. Am. Nat., 114, 1–22.

    Google Scholar 

  • Sydes, C. L. (1984) A comparative study of leaf demography in limestone grassland. J. Ecol., 72, 331–45.

    Google Scholar 

  • Tamm, C. O. (1972) Survival and flowering of some perennial herbs. II and III. Oikos, 23, 23–8, 159–66.

    Google Scholar 

  • Thomas, J. A. (1983) The ecology and conservation of Lysandra bellargus (Lepidoptera: Lycaenidae) in Britain. J. Appl. Ecol., 20, 59–83.

    Google Scholar 

  • Tormala, T. and Raatikainen, M. (1976) Primary production and seasonal dynamics of the flora and fauna of the field stratum in a reserved field in Middle Finland. J. Sci. Agric. Soc. Finl., 48, 363–85.

    Google Scholar 

  • Usher, M. B. and Parr, T. W. (1977) Are there successional changes in arthropod decomposer communities? J. Environ. Manage., 5, 151–60.

    Google Scholar 

  • Van Hulst, R. (1978) On the dynamics of vegetation: patterns of environmental and vegetational change. Vegetatio, 38, 65–75.

    Google Scholar 

  • Vepsalainen, K. (1978) Wing dimorphism and diapause in Gerris: determination and adaptive significance. In Evolution of Insect Migration and Diapause (ed. H. Dingle), Springer-Verlag, New York.

    Google Scholar 

  • Waloff, N. (1983) Absence of wing polymorphism in the arboreal phytophagous species of some taxa of temperate Hemiptera: an hypothesis. Ecol. Entomol., 8 229–32.

    Google Scholar 

  • Watt, A. S. (1955) Bracken versus heather, a study in plant sociology. J. Ecol., 43, 490–506.

    Google Scholar 

  • Watt, A. S. (1960) Population changes in acidiphilous grass-heath in Breckland, 1936–57. J. Ecol., 48, 605–29.

    Google Scholar 

  • Werger, M. J. A. and Ellenbroek, G. A. (1978) Leaf size and leaf consistence of a riverine forest formation along a climatic gradient. Oecologia, 34, 297–308.

    Google Scholar 

  • Westhof, V. (1967) Problems and use of structure in the classification of vegetation. Acta Bot. Neerl., 15, 495–511.

    Google Scholar 

  • Williams, C. B. (1947) The logarithmic series and its application to biological problems. J. Anim. Ecol., 14, 253–72.

    Google Scholar 

  • Yarranton, G. A. and Morrison, R. G. (1974) Spatial dynamics of a primary succession: nucleation. J. Ecol., 62, 417–28.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Brown, V.K. (1991). The effects of changes in habitat structure during succession in terrestrial communities. In: Bell, S.S., McCoy, E.D., Mushinsky, H.R. (eds) Habitat Structure. Population and Community Biology Series, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3076-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3076-9_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5363-1

  • Online ISBN: 978-94-011-3076-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics