Skip to main content

The search for the proteinase inhibitor-inducing factor, PIIF

  • Chapter
10 Years Plant Molecular Biology

Abstract

Research into the structure and function of proteinase Inhibitors I and II proteins in organs and tissues of several solanaceous plants began with the discovery and crystallization of Inhibitor I from Russet Burbank potato tubers in 1962 [1]. This was later followed by the isolation and characterization of Inhibitor II from potato tubers [2]. Inhibitor I and II are serine proteinase inhibitors that have evolved as members of two nonhomologous gene families. Inhibitor I proteins have a molecular mass of about 8000 kDa, whereas Inhibitor II proteins have a M r of about 12 000 kDa. Inhibitor I is a potent inhibitor of chymotrypsin, while Inhibitor II is a ‘double-headed’ inhibitor, having evolved by gene duplicated-elongation events from a smaller ancestral gene, and it possesses two reactive sites that are specific for trypsin and chymotrypsin respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ryan CA, Balls AK: An inhibitor of chymotrypsin from Solanum tuberosum and its behavior toward trypsin. Proc Natl Acad Sci USA 48: 1839–1844 (1962).

    Article  PubMed  CAS  Google Scholar 

  2. Bryant J, Green T, Gurusaddaiah T, Ryan CA: Proteinase inhibitor II from potatoes: Isolation and characterization of the isoinhibitor subunits. Biochemistry 15: 3418–3423 (1976).

    Article  PubMed  CAS  Google Scholar 

  3. Ryan CA, Huisman OC: Chymotrypsin inhibitor I from potatoes: A transient component in leaves of young potato plants. Nature 214: 1047 (1967).

    Article  PubMed  CAS  Google Scholar 

  4. Ryan CA: An inducible protein in tomato and potato leaflets. Plant Physiol 43: 1880 (1968).

    Article  PubMed  CAS  Google Scholar 

  5. Plunkett G, Senear DF, Zuroske G, Ryan CA: Proteinase inhibitors I and II from leaves of wounded tomato plants: purification and properties. Arch Biochem Bio-phys 213: 463–672 (1982).

    Article  CAS  Google Scholar 

  6. Green TR, Ryan CA: Wound-induced proteinase inhibitor in plant leaves: A possible defense mechanism against insects. Science 175: 776–777 (1972).

    Article  PubMed  CAS  Google Scholar 

  7. Ryan CA: Assay and biochemical properties of the proteinase inhibitor inducing factor, a wound hormone. Plant Physiol 54: 328–332 (1971).

    Article  Google Scholar 

  8. Brown WE, Takio K, Titani K, Ryan CA: Woundinduced trypsin inhibitor in alfalfa leaves: Identity as a member of the Bowman-Birk inhibitor family. Biochemistry 24: 2105–2108 (1985).

    Article  PubMed  CAS  Google Scholar 

  9. Roby D, Toppan A, Esquerre-Tugaye MT: Cell surface in plant micro-organism interactions. VIII. Increased proteinase inhibitor activity in melon plants in response to infection by Colletotrichum lagenarium or to treatment with an elicitor fraction from this fungus. Physiol Mol P1 Path 30: 6453–460 (1987).

    Google Scholar 

  10. Bradshaw HDF, Hollick JB, Parsons TJ, Clarke HRG, Gordon MP: Systemically wound-responsive genes in poplar trees encode proteins similar to sweet potato sporamins and legume Kunitz trypsin inhibitors. Plant Mol Biol 14: 51–59 (1989).

    Article  Google Scholar 

  11. Hilder VA, Gatehouse AMR, Sheerman SE, Barker RF, Boulter D: A novel mechanism of insect resistance engineered into tobacco. Nature 330: 160–163 (1987).

    Article  CAS  Google Scholar 

  12. Johnson R, Narvaez J, An G, Ryan CA: Expression of proteinase inhibitors I and II in transgenic tobacco plants: Effects on natural defense against Manduca sexta larvae. Proc Natl Acad Sci USA 89: 9871–9875 (1989).

    Article  Google Scholar 

  13. Ryan CA: Proteinase inhibitors in plants: Genes for improving defenses against insects and pathogens. Annu Rev Phytopath 28: 425–449 (1990).

    Article  CAS  Google Scholar 

  14. Darvill AG, Albersheim P: Phyto alexin s and their elicitors: A defense against insects and pathogens. Annu Rev Plant Physiol 35: 243–275 (1984).

    Article  CAS  Google Scholar 

  15. Ryan CA: Oligosaccharide signalling in plants. Annu Rev Cell Biol 3: 295–317 (1987).

    Article  PubMed  CAS  Google Scholar 

  16. Walker-Simmons M, Hadwiger L, Ryan CA: Chitosans and pectic polysaccharides both induce the accumulation of the antifungal phytoalexin pisatin in pea pods and antinutrient proteinase inhibitors in tomato leaves. Biochem Biophys Res Comm 110: 194–199 (1983).

    Article  PubMed  CAS  Google Scholar 

  17. Pearce G, Strydom D, Johnson S, Ryan CA: A polypeptide from tomato leaves activates the expression of proteinase inhibitor genes. Science 253: 895–897 (1991).

    Article  PubMed  CAS  Google Scholar 

  18. Farmer EE, Ryan CA: Interplant communication: Airborne methyl jasmonate induces the synthesis of proteinase inhibitor genes in plant leaves. Proc Natl Acad Sci USA 87: 7713–7716 (1990).

    Article  PubMed  CAS  Google Scholar 

  19. Pena-Cortez H, Sanchez-Serrano JJ, Mertens R, Willmitzer L: Abscisic acid is involved in the woundinduced expression of the proteinase inhibitor II gene in potato and tomato. Proc Natl Acad Sci USA 86: 9851–9855 (1989).

    Article  Google Scholar 

  20. Thornburg RW, Li X: Auxin levels decline in tobacco foliage following wounding. Plant Physiol 93: 500–504 (1990).

    Article  Google Scholar 

  21. Graham JS, Hall G, Pearce G, Ryan CA: Regulation of synthesis of proteinase inhibitors I and II mRNAs in leaves of wounded tomato plants. Planta 169: 399–405 (1986).

    Article  CAS  Google Scholar 

  22. Shumway K, Cheng V, Ryan CA: Evidence for the presence of proteinase inhibitor I in plant cell vacuolar protein bodies. Planta 129: 161–165 (1976).

    Article  CAS  Google Scholar 

  23. Walker-Simmons M, Ryan CA: Immunological identification of proteinase inhibitors I and II in isolated tomato leaf vacuoles. Plant Physiol 60: 61–63 (1977).

    Article  PubMed  CAS  Google Scholar 

  24. Bishop P, Makus KJ, Pearce G, Ryan CA: Proteinase inhibitor inducing factor activity in tomato leaves resides in oligosaccharides enzymically released from cell walls. Proc Natl Acad Sci 78: 3536–3640 (1981).

    Article  PubMed  CAS  Google Scholar 

  25. Bishop P, Pearce G, Bryant JE, Ryan CA: Isolation and characterization of the proteinase inhibitor inducing factor from tomato leaves: Identity and activity of poly- and oligogalacturonide fragments. J Biol Chem 259: 13172–13177 (1984).

    PubMed  CAS  Google Scholar 

  26. Hahn MG, Darvill AG, Albersheim P: Host-pathogen interactions. XIX. The endogenous elicitor, a fragment of a plant cell wall polysaccharide that elicits phytoalexin accumulation in soybeans. Plant Physiol 68: 1161–1169 (1984).

    Article  Google Scholar 

  27. Bruce RJ, West CA: Elicitation of casbene synthetase activity in castor bean. The role of pectic fragments of the plant cell wall in elicitation by a fungal endopolygalactu-ronase. Plant Physiol 69: 1181–1188 (1982).

    Article  PubMed  CAS  Google Scholar 

  28. Moloshok T, Pearce G, Ryan CA: Oligouronide signalling of proteinase inhibitor genes in plants: Structure-activity relationships of di- and trigalacturonic acids and their derivatives: Arch. Biochem. Biophys. in press.

    Google Scholar 

  29. Farmer EE, Moloshok TD, Saxton MJ, Ryan CA: Oligosaccharide signaling in plants: Specificity of oligouronide-enhanced plasma membrane protein phosphorylation. J Biol Chem 266: 3140–3145 (1991).

    PubMed  CAS  Google Scholar 

  30. Bruce RJ, West CA: Elicitation of lignin biosynthesis and isoperoxidase activity by pectic fragments in suspension cultures of castor bean. Plant Physiol 89: 889–897 (1989).

    Article  Google Scholar 

  31. Farmer EE, Pearce G, Ryan CA: In vitro phosphorylation of plant plasma membrane proteins in response to the proteinase inhibitor inducing factor (PIIF). Proc Natl Acad Sci USA 86: 1539–1542 (1989).

    Article  PubMed  CAS  Google Scholar 

  32. Kohn R: Ion binding in polyuronates, alginate and pectin. Pure Appl Chem 42: 371–397 (1985).

    Article  Google Scholar 

  33. Grant GT, Morris BR, Rees DA, Smith PJC, Thorn D: Biological interactions between polysaccharides and divalent cations: The eggbox model. FEBS Lett 32: 195–198 (1973).

    Article  CAS  Google Scholar 

  34. Cosio EG, Frey T, Ebel J: Solubilization and characteristics of the binding sites for fungal β-glucans from soybean cell membranes. FEBS Lett 264: 235–238 (1990).

    Article  PubMed  CAS  Google Scholar 

  35. Cheong J-J, Hahn MG: A specific, high-affinity binding site for the hepta-β-glucoside elicitor exists in soybean membranes. Plant Cell 3: 137–147 (1991).

    PubMed  CAS  Google Scholar 

  36. Baydoun EA-H, Fry SC: The immobility of pectic substances in injured tomato leaves and its bearing on the identity of the wound hormone. Planta 165: 269–276 (1985).

    Article  CAS  Google Scholar 

  37. Bowles DJ: Defense related proteins in higher plants. Annu Rev Biochem 59: 873–907 (1990).

    Article  PubMed  CAS  Google Scholar 

  38. Nelson CE, Walker-Simmons M, Makus D, Wuroske G, Graham J, Ryan CA: Regulation of synthesis and accumulation of proteinase inhibitors in leaves of wounded tomato plants: In: Hedin PA (ed), Plant Resistance to Insects, pp. 103–122. American Chemical Society, Washington, DC (1983).

    Chapter  Google Scholar 

  39. Anderson JM: Membrane-derived fatty acids as precursors to second messengers. In: Boss WF, Morre KJ (eds) Second Messengers in Plant Growth and Development, pp. 181–212. Alan Liss, New York. (1989).

    Google Scholar 

  40. Parthier B Jasmonates: Hormonal regulators of stress factors in leaf senescence? J Plant Growth Regul 9: 57–63 (1990).

    Article  CAS  Google Scholar 

  41. Farmer EE, Pearce G, Ryan CA: Regulation of expression of proteinase inhibitor genes by methyl jasmonate and jasmonic acid. Plant Physiol, in press (1992).

    Google Scholar 

  42. Peña-Cortés H, Willmitzer L, Sánchez-Serrano J: Abscisic acid mediates wound-induction but not developmental expression of the proteinase inhibitor II gene family. Plant Cell 3: 963–972 (1991).

    PubMed  Google Scholar 

  43. Doherty HM, Bowles DJ: The role of pH and ion transport in oligosaccharide-induced proteinase inhibitor accumulation in tomato plants. Plant Cell Envir 13: 851–855 (1990).

    Article  CAS  Google Scholar 

  44. Thain JF, Doherty HM, Bowles KJ, Wildon DC: Oligosaccharides that induce proteinase inhibitor activity in tomato plants cause depolarization of tomato leaf cells. Plant Cell Envir 13: 569–574 (1990).

    Article  CAS  Google Scholar 

  45. Thornburg RW, Cleveland TE, Ryan CA: Wound-inducible expression of potato inhibitor II gene in transgenic tobacco plants. Proc Natl Acad Sci USA 84: 744–748 (1987).

    Article  PubMed  CAS  Google Scholar 

  46. Keil M, Sánchez-Serrano J, Schell J, Willmitzer L: Primary structure of a proteinase inhibitor II gene from potato. Nucl Acids Res 14: 5641–5650 (1986).

    Article  PubMed  CAS  Google Scholar 

  47. Sanchez-Serrano J, Keil M, O’Connor A, Schell J, Willmitzer L: Wound-induced expression of a potato proteinase inhibitor II gene in transgenic tobacco plants. EMBO J 6: 303–306 (1987).

    PubMed  CAS  Google Scholar 

  48. Peña-Cortés H, Sanchez-Serrano J, Rocha-Sosa M, Willmitzer L: Systemic induction of proteinase inhibitor-II gene expression in potato plants by wounding. Planta 174: 84–89 (1988).

    Article  Google Scholar 

  49. Lee JS, Brown WE, Pearce G, Dreher TW, Graham JS, Ahern KG, Pearson GD, Ryan CA: Molecular characterization and phylogenetic studies with a wound-inducible proteinase inhibitor gene in Lycopersicum species. Proc Natl Acad Sci USA 83: 7277–7281 (1986).

    Article  PubMed  CAS  Google Scholar 

  50. Cleveland TE, Thornburg R, Ryan CA: Molecular characterization of a wound-inducible proteinase inhibitor gene from potato and the processing of the mRNA and protein. Plant Mol Biol 8: 199–207 (1987).

    Article  Google Scholar 

  51. Wingate VPM, Ryan CA: Uniquely regulated proteinase Inhibitor I gene in a wild tomato species. Plant Physiol 97: 496–501 (1991).

    Article  PubMed  CAS  Google Scholar 

  52. An G, Mitra A, Choi HK, Costa MA, An K, Thornburg RW, Ryan CA: Functional analysis of the 3′ control region of the potato wound-inducible proteinase inhibitor II gene. Plant Cell 1: 115–122 (1989).

    PubMed  CAS  Google Scholar 

  53. Palm CJ, Costa MA, An G, Ryan CA: Wound-inducible nuclear protein binds fragments that regulate a proteinase inhibitor II gene from potato. Proc Natl Acad Sci USA 87: 603–607 (1990).

    Article  PubMed  CAS  Google Scholar 

  54. Sánchez-Serrano J, Peña-Cortés H, Willmitzer L, Prat S: Identification of potato nuclear binding to the distal promoter region of the proteinase inhibitor II gene. Proc Natl Acad Sci USA 87: 7205–7209 (1990).

    Article  PubMed  Google Scholar 

  55. Reeves R: In: Adolph DW (ed) Chromosomes and Chromatin, vol 1, pp. 109–131. CRL Press (1988).

    Google Scholar 

  56. Spiker S: Plant chromatin structure. Annu Rev Plant Physiol 36: 235–253 (1985).

    Article  CAS  Google Scholar 

  57. Elgin SCR: The formation and function of DNase I hypersensitive sites in the process of gene activation. J Biol Chem 263: 19259–19262 (1988).

    PubMed  CAS  Google Scholar 

  58. Vick BA, Zimmerman DC: The biosynthesis of jasmonic acid: A physiological role for plant lipoxygenase. Biochem Biophys Res Comm 111: 470–477 (1983).

    Article  PubMed  CAS  Google Scholar 

  59. Samuelsson B, Goldyne M, Granstrom E, Hamberg M, Hammarstrom S, Malmsten: Prostaglandins and thromboxanes. Annu Rev Biochem 47: 997–1029 (1978).

    Article  PubMed  CAS  Google Scholar 

  60. Bostock RM, Kuc JA, Laine RA: Eicosapentaenoic and arachidonic acids from Phytophthora infestans elicit fungitoxic sesquiterpenes in the potato. Science 212: 67–69 (1981).

    Article  PubMed  CAS  Google Scholar 

  61. Zimmerman DC, Coudron CA: Identification of traumatin, a wound hormone, as 12–oxyOtrans-10-dodecenoic acid. Plant Physiol 623: 536–541 (1979).

    Article  Google Scholar 

  62. Hildebrand DF, Hamilton-Kemp T, Legg CS, Bookjans G: Plant lipoxygenases: Occurrence, properties and possible functions. Curr Topics Plant Biochem Physiol 7: 201–219 (1988).

    Google Scholar 

  63. Galliard T: Degradation of acyl lipids: Hydrolytic and oxidative enzymes. Biochem Plants 4: 85–116 (1980).

    CAS  Google Scholar 

  64. Theologis A, Laites GG: Wound-induced membrane lipid breakdown in potato tuber. Plant Physiol 68: 53–58 (1981).

    Article  PubMed  CAS  Google Scholar 

  65. Hasson EP, Laites GG: Purification and characterization of an A type phospholipase from potato and its effect on potato mitochondria. Plant Physiol 57: 148–152 (1976).

    Article  PubMed  CAS  Google Scholar 

  66. Hildebrand DF, Rodriguez JG, Brown GC, Luu KT, Volden CS: Peroxidative responses of leaves in two soybean genotypes injured by two spotted spider mites (Acari: Tetranychidae). J Econ Ent 79:1459–1465 (1986).

    Google Scholar 

  67. Galliard T: Lipolytic and lipoxygenase enzymes in plants and their action in wounded tissues. In: Kahl G (ed) Biochemistry of Wounded Plant Tissues, pp. 155–201. Walter de Gruyter, Berlin (1978).

    Google Scholar 

  68. Fournier J, Pelesier B, Esquerre-Tugaye: Induction of lipoxygenase activity in cultured tobacco (Nicotiana tabacum) cells by elicitors of ethylene from Phytophthora parasitica var nicotianae. C.R. Acad Sci Paris 303: 651–656 (1986).

    CAS  Google Scholar 

  69. Dietrich A, Mayer JE, Hahlbrock K: Fungal elicitor triggers rapid, transient, and specific protein phosphorylation in parsley cell suspension cultures. J Biol Chem 265: 6360–6368 (1990).

    PubMed  CAS  Google Scholar 

  70. Felix G, Frosskopf G, Regenass M, Boller T: Protein phosphorylation is involved in signal transduction during elicitation of the plant defense response. Proc Natl Acad Sci USA in press (1991).

    Google Scholar 

  71. Pevsner J, Hou V, Snowman AM, Snyder SH: Odorant-binding protein: Characterization of ligand binding. J Biol Chem 265: 6118–6125 (1990).

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Robbert A. Schilperoort Leon Dure

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ryan, C.A. (1992). The search for the proteinase inhibitor-inducing factor, PIIF. In: Schilperoort, R.A., Dure, L. (eds) 10 Years Plant Molecular Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2656-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2656-4_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5174-3

  • Online ISBN: 978-94-011-2656-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics