Skip to main content

Molecular mechanisms of chemosensory transduction: gustation and olfaction

  • Chapter
Fish Chemoreception

Part of the book series: Fish & Fisheries Series ((FIFI,volume 6))

Abstract

Understanding of vertebrate chemoreception has been greatly aided by several aquatic models. The fishes in particular are well suited as biological models because they often possess specific, sensitive and readily accessible chemosensory organs. The ability to define receptor specificity and sensitivity — using classical receptor binding techniques — has permitted a critical evaluation of the several transduction sequences that follow the initial receptor binding step. It is now clear that the peripheral specificity hypothesized with neurophysiological techniques is present at the receptor membrane level and that these receptor events are coupled to changes in intracellular ionic activity via either GTP-binding regulatory protein stimulation (inhibition) of second messengers or direct translocation of ions via stimulus-gated ion channel receptors. The recent progress in characterizing these sequences in fish chemosensory systems has stimulated the search for similar mechanisms in mammalian chemoreception.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abdel-Latif, A.A. (1986) Calcium-mobilizing receptors, polyphosphoinositides and the generation of second messengers. Pharmacol. Rev., 38, 227–72.

    PubMed  CAS  Google Scholar 

  • Alkon, D.L. and Rasmussen, H. (1988) A spatial-temporal model of cell activation. Science, Wash., D.C., 239, 998–1005.

    Article  PubMed  CAS  Google Scholar 

  • Anholt, R.R.H. (1989) Molecular physiology of olfaction. Am. J. Physiol., 257, C1043–54.

    PubMed  CAS  Google Scholar 

  • Berridge, M.J. (1984) Inositol trisphosphate and diacylglycerol as second messengers. Biochem. J., 220, 345–60.

    PubMed  CAS  Google Scholar 

  • Berridge, M.J. and Irvine, R. (1984) Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature, 312, 315–21.

    Article  PubMed  CAS  Google Scholar 

  • Boekhoff, I., Tareilus, E., Strotmann, J. and Breer, H. (1990) Rapid activation of alternative second messenger pathways in olfactory cilia from rats by different odorants. EMBO J., 9, 2453–8.

    PubMed  CAS  Google Scholar 

  • Boyle, A.G., Park, Y.S., Huque, T. and Bruch, R.C. (1987) Properties of phospholipase C in isolated olfactory cilia from the channel catfish (Ictalurus punctatus). Comp. Biochem. Physiol., 88B, 767–75.

    CAS  Google Scholar 

  • Brand, J.G., Bryant, B.P., Cagan, R.H. and Kalinoski, D.L. (1987) Biochemical studies of taste sensation. XIII. Enantiomeric specificity of alanine taste receptor sites in catfish, Ictalurus punctatus. Brain Res. Amst., 416, 119–28.

    Article  CAS  Google Scholar 

  • Brand, J.G., Huque, T., Rabinowitz, J.L. and Bayley, D.L. (1989a) Lipid characterization and 14C-acetate metabolism in catfish taste epithelium. Experientia, 45, 77–81.

    Article  PubMed  CAS  Google Scholar 

  • Brand, J.G., Teeter, J.H., Cagan, R.H. and Kare, M.R. (eds) (1989b) Chemical Senses 1. Receptor Events and Transduction in Taste and Olfaction, Marcel Dekker, New York, 529 pp.

    Google Scholar 

  • Brand, J.G., Teeter, J.H., Kumazawa, T., Huque, T. and Bayley, D.L. (1991) Transduction mechanisms for the taste of amino acids. Physiol. Behav., 49, 899–904.

    Article  PubMed  CAS  Google Scholar 

  • Brown, S.B. and Hara, T.J. (1981) Accumulation of chemostimulatory amino acids by a sedimentable fraction isolated from olfactory rosettes of rainbow trout (Salmo gairdneri). Biochim. biophys. Acta, 675, 149–62.

    Article  PubMed  CAS  Google Scholar 

  • Bruch, R.C. (1989) Signal transduction in olfaction and taste, in G-Proteins (eds R. Iyengar, and L. Birnbaumer), Academic Press, New York, pp. 411–27.

    Google Scholar 

  • Bruch, R.C. (1990) G proteins in olfactory neurons, in G-Proteins and Calcium Signalling (ed. P.H. Naccache), CRC Press, Boca Raton, FL, pp. 123–34.

    Google Scholar 

  • Bruch, R.C. and Gold, G.H. (1990) G-protein-mediated signalling in olfaction, in G-Proteins as Mediators of Cellular Signalling Processes (eds M.D. Houslay and G. Milligan), Wiley, London, pp. 113–24.

    Google Scholar 

  • Bruch, R.C. and Kalinoski, D.L. (1987) Interaction of GTP-binding regulatory proteins with chemosensory receptors. J. biol. Chem., 262, 2401–4.

    PubMed  CAS  Google Scholar 

  • Bruch, R.C. and Rulli, R.D. (1988) Ligand binding specificity of a neutral L-amino acid olfactory receptor. Comp. Biochem. Physil., 91B, 535–40.

    CAS  Google Scholar 

  • Bruch, R.C. and Teeter, J.H. (1989) Second messenger signalling mechanisms in olfaction, in Chemical Senses 1: Receptor Events and Transduction in Taste and Olfaction (eds J.G. Brand, J.H. Teeter, M.R. Kare and R.H. Cagan), Marcel Dekker, New York, pp. 283–98.

    Google Scholar 

  • Bruch, R.C. and Teeter, J.H. (1990) Cyclic AMP links amino acid chemoreceptors to ion channels in olfactory cilia. Chem. Senses, 15, 419–30.

    Article  CAS  Google Scholar 

  • Bruch, R.C, Kalinoski, D.L. and Kare, M.R. (1988) Biochemistry of vertebrate olfaction and taste. A. Rev. Nutr., 8, 21–42.

    Article  CAS  Google Scholar 

  • Bruch, R.C, Rulli, R.D. and Boyle, A.G. (1987) Olfactory L-amino acid receptor specificity and stimulation of potential second messengers. Chem. Senses, 12, 642–3.

    Google Scholar 

  • Bruch, R.C, Restrepo, D. and Teeter, J.H. (1989) Cyclic AMP and IP3 link G protein-coupled chemoreceptors to ion channels in olfactory cilia. J. gen. Physiol., 94, 4a.

    Google Scholar 

  • Bryant, P.B., Brand, J.G., Kalinoski, D.L., Bruch, R.C. and Cagan, R.H. (1987) Use of monoclonal antibodies to characterize amino acid taste receptors in catfish: effects on binding and neural responses, in Olfaction and Taste IX (eds S.D. Roper and J. Atema), New York Acad. Sci., New York, pp. 208–9.

    Google Scholar 

  • Buck, L. and Axel, R. (1991) A novel multi-gene family may encode odorant receptors: a molecular basis for odor recognition. Cell, 65, 175–87.

    Article  PubMed  CAS  Google Scholar 

  • Cagan, R.H. (1976) Biochemical studies of taste sensation. II. Labeling of cyclic AMP of bovine taste papillae in response to sweet and bitter stimuli. J. Neurosci. Res., 2, 363–71.

    Article  PubMed  CAS  Google Scholar 

  • Cagan, R.H. (1979) Biochemical studies of taste sensation. VII. Enhancement of taste stimulus binding to a catfish taste receptor preparation by prior exposure to the stimulus. J. Neurobiol., 10, 207–20.

    Article  PubMed  CAS  Google Scholar 

  • Cagan, R.H. (1986) Biochemical studies of taste sensation. XII. Specificity of binding of taste ligands to a sedimentable fraction from catfish taste tissue. Comp. Biochem. Physiol., 85A, 355–8.

    Article  CAS  Google Scholar 

  • Cagan, R.H. (ed.) (1989) Neural Mechanisms in Taste, CRC Press, Boca Raton, FL 232 pp.

    Google Scholar 

  • Cagan, R.H. and Boyle, A.G. (1984) Biochemical studies of taste sensation. XL. Isolation, characterization and taste ligand binding activity of plasma membranes from catfish taste tissue. Biochim. biophys. Acta, 799, 230–7.

    Article  PubMed  CAS  Google Scholar 

  • Cagan, R.H. and Zeiger, W.N. (1978) Biochemical studies of olfaction: binding specificity of radioactively labeled stimuli to an isolated olfactory preparation from rainbow trout (Salmo gairdneri). Proc. natn. Acad. Sci. U.S.A., 75, 4679–83.

    Article  CAS  Google Scholar 

  • Cancalon, P. (1978) Isolation and characterization of the olfactory epithelial cells of the catfish. Chem. Senses Flavour, 3, 381–96.

    Article  CAS  Google Scholar 

  • Cancalon, P. (1983) Receptor cells of the catfish olfactory mucosa. Chem. Senses, 8, 203–9.

    Article  Google Scholar 

  • Caprio, J. (1978) Olfaction and taste in the channel catfish: an electrophysiological study of the responses to amino acids and derivatives. J. comp. Physiol., 123, 357–71.

    Article  Google Scholar 

  • Caprio, J. (1982) High sensitivity and specificity of olfactory and gustatory receptors of catfish to amino acids, in Chemoreception in Fishes (ed. T.J. Hara), Elsevier, Amsterdam, pp. 109–34.

    Google Scholar 

  • Caprio, J. and Byrd, R.P., jun. (1984) Electrophysiological evidence for acidic, basic and neutral amino acid olfactory receptor sites in the catfish. J. Gen. Physiol., 84, 403–22.

    Article  PubMed  CAS  Google Scholar 

  • Erickson, J.R. and Caprio, J. (1984) The spatial distribution of ciliated and microvillous olfactory receptor neurons in the channel catfish is not matched by a differential specificity to amino acid and bile salt stimuli. Chem. Senses, 9, 127–41.

    Article  Google Scholar 

  • Exton, J.H. (1988) Mechanisms of action of calcium-mobilizing agonists: some variations on a young theme. FASFB J., 2, 2670–6.

    CAS  Google Scholar 

  • Getchell, T.V. (1986) Functional properties of vertebrate olfactory receptor neurons. Physiol . Rev., 66, 772–818.

    PubMed  CAS  Google Scholar 

  • Getchell, T.V., Margolis, F.L. and Getchell, M.L. (1985) Perireceptor and receptor events in vertebrate olfaction. Progr. Neurobiol., 23, 317–45.

    Article  Google Scholar 

  • Getchell, T.V., Grillo, M., Tate, S., Urade, R., Teeter, J.H. and Margolis, F.L. (1989) Expression of amino acid taste receptors in Xenopus oocytes. Neurochem. Res., 15, 449–56.

    Article  Google Scholar 

  • Gilman, A.G. (1987) G-Proteins: transducers of receptor-generated signals. A. Rev. Biochem., 56, 615–49.

    Article  CAS  Google Scholar 

  • Hatt, H. (1989) Stimulus-driven chemosensory membrane channels on crayfish sensory cells, in Chemical Senses 1. Receptor Events and Transduction in Taste and Olfaction (eds. J.G. Brand, J.H. Teeter, R.H. Cagan and M.R. Kare), Marcel Dekker, New York, pp. 363–87.

    Google Scholar 

  • Huque, T. and Bruch, R.C. (1986) Odorant- and guanine nucleotide-stimulated phosphoinositide turnover in olfactory cilia. Biochem. Biophys. Res. Commun., 137, 36–42.

    Article  PubMed  CAS  Google Scholar 

  • Huque, T., Brand, J.G., Rabinowitz, J.L. and Bayley, D.L. (1987) Phospholipid turnover in catfish barbel (taste) epithelium with special reference to phosphatidyl- 4,5-bisphosphate. Chem. Senses, 12, 666–7.

    Google Scholar 

  • Jones, D.T. and Reed, R.R. (1987) Molecular cloning of five GTP-binding protein cDNA species from rat olfactory neuroepithelium. J. biol. Chem., 262, 14241–9.

    PubMed  CAS  Google Scholar 

  • Jones, D.T. and Reed, R.R. (1989) Golf: an olfactory neuron specific G-protein involved in odorant signal transduction. Scienc, Wash., D.C., 244, 790–5.

    Article  CAS  Google Scholar 

  • Kalinoski, D.L., Bruch, R.C. and Brand, J.G. (1987) Differential interaction of lectins with chemosensory receptors. Brain Res. Amst., 418, 34–40.

    Article  CAS  Google Scholar 

  • Kalinoski, D.L., Bryant, B.P., Shaulsky, G., Brand, J.G. and Harpaz, S. (1989a) SpecificL-arginine taste receptor sites in the catfish, Ictalurus punctatus: biochemical and neurophysiological characterization. Brain Res. Amst., 488, 163–73.

    Article  CAS  Google Scholar 

  • Kalinoski, D.L., Huque, T., La Morte, V.J. and Brand, J.G. (1989b) Second messenger events in taste, in Chemical Senses 1. Receptor Events and Transduction in Taste and Olfaction (eds J.G. Brand, J.H. Teeter, R.H. Cagan and M.R. Kare), Marcel Dekker, New York, pp. 85–101.

    Google Scholar 

  • Krueger, J.M. and Cagan, R.H. (1976) Biochemical studies of taste sensation. IV. Binding of L-[3H]alanine to a sedimentable fraction from catfish barbel epithelium. J. biol. Chem., 259, 88–97.

    Google Scholar 

  • Kurihara, K. (1972) Inhibition of cyclic 3′,5′-nucleotide phosphodiesterase in bovine taste papillae by bitter taste stimuli. FEBS Lett., 27, 279–81.

    Article  PubMed  CAS  Google Scholar 

  • Lancet, D. (1988) Molecular components of olfactory reception and transduction, in Molecular Neurobiology of the Olfactory System (eds F.L. Margolis and T.V. Getchell), Plenum Press, New York, pp. 25–50.

    Chapter  Google Scholar 

  • Labaraca, P., Simon, S.A. and Anholt, R.R.H. (1988) Activation by odorants of a multistate cation channel from olfactory cilia. Proc. Nath Sci. U.S.A., 85, 944–7.

    Article  Google Scholar 

  • Lynch, C.J., Blackmore, P.F., Charest, R. and Exton, J.H. (1985) The relationships between receptor binding capacity for norepinephrine, angiotensin II and vasopressin and release of inositol trisphosphate, Ca2+ mobilization and Phosphorylase activation in rat liver. Mol. Pharmacol., 28, 93–9.

    PubMed  CAS  Google Scholar 

  • Margolis, F.L. and Getchell, T.V. (eds) (1988) Molecular Neurobiology of the Olfactory System, Plenum Press, New York, 379 pp.

    Google Scholar 

  • Muller, J.F. and Marc, R.E. (1984) Three distinct morphological classes of receptors in fish olfactory organs. J. comp. Neurol., 222, 482–95.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura, T. and Gold, G.H. (1987) A cyclic nucleotide-gated conductance in olfactory receptor cilia. Nature, 325, 442–4.

    Article  PubMed  CAS  Google Scholar 

  • Novoselov, V.I., Krapivinskaya, L.D. and Fesenko, E.E. (1980) Molecular mechanisms of odor sensing. V. Some biochemical characteristics of the alanineous receptor from the olfactory epithelium of the skate, Dasyatis pastinaca. Chem. Senses Flavour, 5, 195–203.

    Article  CAS  Google Scholar 

  • Novoselov, V.I., Krapivinskaya, L.D. and Fesenko, E.E. (1988a) Amino acid binding glycoproteins from the olfactory epithelium of skate (Dasyatis pastinaca). Chem. Senses, 13, 267–78.

    Article  CAS  Google Scholar 

  • Novoselov, V.I., Krapivinskaya, L.D., Krapivinsky, G.B. and Fesenko, E.E. (1988b) GTP-binding protein associated with amino acid binding proteins from olfactory epithelium of skate, Dasyatis pastinaca. FEBS Lett., 234, 471–4.

    Article  PubMed  CAS  Google Scholar 

  • Parfenova, E.V. and Etingof, R.N. (1988) The participation of GTP-binding proteins in olfactory receptors in vertebrates. Biokhimiya, 53, 435–43.

    Google Scholar 

  • Price, S. (1973) Phosphodiesterase in tongue epithelium: activation by bitter taste stimuli. Nature, 241, 54–5.

    Article  PubMed  CAS  Google Scholar 

  • Putney, J.W., jun. (1987) Formation and actions of calcium-mobilizing messenger, inositol 1,4,5-trisphosphate. Am. J. Physiol., 252, G149–57.

    PubMed  CAS  Google Scholar 

  • Rabinowitz, J.L., Huque, T., Brand, J.G. and Bayley, D.L. (1990) Lipid metabolic interrelationships and phospholipase activity in gustatory epithelium of Ictalurus punctatus in vitro. Lipids, 25, 181–6.

    Article  PubMed  CAS  Google Scholar 

  • Rehnberg, B.G. and Schreck, C.B. (1986) The olfactory L-serine receptor in coho salmon: biochemical specificity and behavioral response. J. comp. Physiol., 159, 61–7.

    Article  CAS  Google Scholar 

  • Restrepo, D. and Boyle, A.G. (1991) Stimulation of olfactory receptors alters regulation of [Cai] in olfactory neurons of the catfish (Ictalurus punctatus). J. Membrane Biol., 120, 223–32.

    Article  CAS  Google Scholar 

  • Restrepo, D., Miyamoto, T., Bryant, B.P. and Teeter, J.H. (1990) Odor stimuli trigger influx of calcium into olfactory neurons of the channel catfish. Science, Wash., D.C., 249, 1166–8.

    Article  PubMed  CAS  Google Scholar 

  • Rhein, L.D. and Cagan, R.H. (1980) Biochemical studies of olfaction: isolation, characterization and odorant binding activity of cilia from rainbow trout olfactory rosettes. Proc. natn. Acad. Sci. U.S.A., 77, 4412–16.

    Article  CAS  Google Scholar 

  • Rhein, L.D. and Cagan, R.H. (1981) Role of cilia in olfactory recognition, in Biochemistry of Taste and Olfaction (eds R.H. Cagan and M.R. Kare), Academic Press, New York, pp. 47–68.

    Chapter  Google Scholar 

  • Rhein, L.D. and Cagan, R.H. (1983) Biochemical studies of olfaction: binding specificity of odorants to a cilia preparation from rainbow trout olfactory rosettes. J. Neurochem., 41, 569–77.

    Article  PubMed  CAS  Google Scholar 

  • Rhein, L.D., Cagan, R.H., Orkand, P.M. and Dolack, M.K. (1981) Surface specializations of the olfactory epithelium of rainbow trout, Salmo gairdneri. Tissue and Cell, 13, 577–87.

    Article  PubMed  CAS  Google Scholar 

  • Roper, S.D. (1989) The cell biology of vertebrate taste receptors. A. Rev. Neurosci., 12, 329–53.

    Article  CAS  Google Scholar 

  • Sheiko, L.M., Ostretsova, IB., Leuko, A.V., Volotvskii, I.D., Etingof, R.N. and Konev, S.V. (1983) Interaction of leucine with plasma membranes of catfish taste buds. Molek. Biol., 17, 1220–6.

    CAS  Google Scholar 

  • Snyder, S.H., Sklar, P.B. and Pevsner, J. (1988) Olfactory receptor mechanisms: odorant-binding protein and adenylate cyclase, in Molecular Neurobiology of the Olfactory System (eds F.L. Margolis and T.V. Getchell), Plenum Press, New York, pp. 3–24.

    Chapter  Google Scholar 

  • Steinlen, S., Klumpp, S. and Schultz, E. (1990) Guanylate cyclase in olfactory cilia from rat and pig. Biochim. biophys. Acta, 1054, 69–72.

    Article  PubMed  CAS  Google Scholar 

  • Teeter, J.H., Brand, J.G. and Kumazawa, T. (1990) A stimulus-activated conductance in isolated taste epithelial membranes. Biophys. J., 58, 253–9.

    Article  PubMed  CAS  Google Scholar 

  • Teeter, J.H., Sugimoto, K. and Brand, J.G. (1989) Ionic currents in taste cells and reconstituted taste epithelial membranes, in Chemical Senses 1. Receptor Events and Transduction in Taste and Olfaction (eds J.G. Brand, J.H. Teeter, R.H. Cagan and M.R. Kare), Marcel Dekker, New York, pp. 151–70.

    Google Scholar 

  • Thommesen, G. (1983) Morphology, distribution, and specificity of olfactory receptor cells in salmonid fishes. Acta physiol. scand., 117, 241–9.

    Article  PubMed  CAS  Google Scholar 

  • Trapido-Rosenthal, H.G., Carr, W.E.S. and Gleeson, R.A. (1989) Biochemistry of purinergic olfaction. The importance of nucleotide dephosphorylation, in Chemical Senses 1. Receptor Events and Transduction in Taste and Olfaction (eds J.G. Brand, J.H. Teeter, R.H. Cagan and M.R. Kare), Marcel Dekker, New York, pp. 243–81.

    Google Scholar 

  • Ui, M. (1986) Pertussis toxin as a probe of receptor coupling to inositol lipid metabolism, in Phosphoinositides and Receptor Mechanisms (ed. J.W. Putney, jun.), Liss, New York, pp. 163–95.

    Google Scholar 

  • Vodyanoy, V. (1989) Cyclic nucleotide-gated electrical activity in olfactory receptor cells, in Chemical Senses 1: Receptor Events and Transduction in Taste and Olfaction (eds J.G. Brand, J.H. Teeter, R.H. Cagan and M.R. Kare), Marcel Dekker, New York, pp. 319–46.

    Google Scholar 

  • Williamson, J.R. (1986) Role of inositol lipid breakdown in the generation of intracellular signals. Hypertension, 8 (Supp. II), 140–56.

    Google Scholar 

  • Yamomoto, M. (1982) Comparative morphology of the peripheral olfactory organs in telosts, in Chemoreception in Fishes (ed. T.J. Hara), Elsevier, Amsterdam, pp. 39–59.

    Google Scholar 

  • Zielinski, B. and Hara, T.J. (1988) Morphological and physiological development of olfactory receptor cells in rainbow trout (Salmo gairdneri) embryos. J. comp. Neurol. 271, 300–11.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Brand, J.G., Bruch, R.C. (1992). Molecular mechanisms of chemosensory transduction: gustation and olfaction. In: Hara, T.J. (eds) Fish Chemoreception. Fish & Fisheries Series, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-2332-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-2332-7_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5030-2

  • Online ISBN: 978-94-011-2332-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics