Skip to main content

The physiology of phytochrome action

  • Chapter
Photomorphogenesis in Plants

Abstract

Plants possess the capability of adapting their patterns of growth and development to changes in the light conditions of the environment. The action of light on plant growth and development (photomorphogenesis) is mediated by specific photoreceptors. Light-induced changes in the state of the photo-receptors provide the signal for the induction/modulation of plant responses to light. A major plant photomorphogenic photoreceptor is phy tochrome, a biliprotein pigment (Chapter 4.1) which is reversibly interconverted by light between an inactive form, Pr, and a physiologically active one, Pfr, with peaks of absorption in the red (R) and far-red (FR) regions of the spectrum, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Further reading

  • Borthwick H.A. (1972) History of phytochrome — Biological significance of phytochrome. In: Phytochrome, pp. 3–44, Mitrakos K. and Shropshire W Jr. (eds.) Academic Press, London.

    Google Scholar 

  • Hendricks S.B. and VanDerWoude W.J. (1983) How phytochrome acts: perspectives on the continuing quest. In: Encyclopedia of Plant Physiology, New Series, Vol 16A, Photomorphogenesis, pp. 3–23, Shropshire W Jr. and Mohr H. (eds.) Springer-Verlag, Berlin.

    Google Scholar 

  • Hillman W.S. (1967) The physiology of phytochrome. Annu. Rev. Plant Physiol. 18: 301–324.

    Article  CAS  Google Scholar 

  • Mancinelli A.L. (1985) Light-dependent anthocyanin synthesis. Bot. Rev. 51: 107–157.

    Article  Google Scholar 

  • Toole E.H., Hendricks S.B., Borthwick H.A. and Toole V.K. (1956) Physiology of seed germination. Annu. Rev. Plant Physiol. 7: 299–324.

    Article  CAS  Google Scholar 

References

  • Beggs C.J., Geile W., Holmes M.G., Jabben M, Jose A.M. and Schäfer E. (1981) High irradiance response promotion of a subsequent light induction response in Sinapis alba L. Planta 151:135–140.

    Article  Google Scholar 

  • Black M. and Shuttleworth J.E. (1974) The role of the cotyledons in the photocontrol of hypocotyl extension in Cucumis sativus L. Planta 117: 57–66.

    Article  Google Scholar 

  • Boisard J., Marmé D. and Schäfer E. (1971) The demonstration in vivo of more than one form of Pfr. Planta 99: 302–310.

    Article  CAS  Google Scholar 

  • Boisard J., Marmé D. and Briggs W.R. (1974) In vitro properties of membrane-bound phytochrome. Plant Physiol. 54: 272–276.

    Article  PubMed  CAS  Google Scholar 

  • Borthwick H.A., Hendricks S.B., Parker M.W., Toole E.H. and Toole V.K (1952) A reversible photoreaction controlling seed germination. Proc. Natl. Acad. Sci. USA 38:662–666.

    Article  PubMed  CAS  Google Scholar 

  • Briggs W.R., Mösinger E. and Schäfer E. (1988) Phytochrome regulation of greening in barley: effects on chlorophyll accumulation. Plant Physiol. 86: 435–440.

    Article  PubMed  CAS  Google Scholar 

  • Brockmann J., Rieble S., Kazarinova-Fukshansky N., Seyfried M. and Schäfer E. (1987) Phytochrome behaves as a dimer in vivo. Plant Cell Environ. 10:105–111.

    CAS  Google Scholar 

  • Butler W.L., Lane H.C. and Siegelman H.W. (1963) Nonphotochemical transformations of phytochrome in vivo. Plant Physiol. 38: 514–519.

    Article  PubMed  CAS  Google Scholar 

  • Butler W.L., Norris K.H., Siegelman H.W. and Hendricks S.B. (1959) Detection, assay, and preliminary purification of the pigment controlling photoresponsive development of plants. Proc. Natl. Acad. Sci. USA 45:1703–1708.

    Article  PubMed  CAS  Google Scholar 

  • Butler W.L., Hendricks S.B. and Siegelman H.W. (1964) Action spectra of phytochrome in vitro. Photochem. Photobiol. 3: 521–528.

    Article  CAS  Google Scholar 

  • Dooskin R.H. and Mancinelli A.L. (1968) Phytochrome decay and coleoptile elongation in Avena following various light treatments. Bull. Torrey Bot. Club 95: 474–487.

    Article  Google Scholar 

  • Downs R.J. and Siegelman H.W. (1963) Photocontrol of anthocyanin synthesis in Milo seedlings. Plant Physiol. 38:25–30.

    Article  PubMed  CAS  Google Scholar 

  • Fredericq H. (1964) Conditions determining effects of far-red and red irradiation on flowering response of Pharbitis nil. Plant Physiol. 39: 812–816.

    Article  PubMed  CAS  Google Scholar 

  • Fukshansky L. and Schäfer E. (1983) Models in photomorphogenesis. In: Encyclopedia of Plant Physiology, New Series, Vol. 16A, Photomorphogenesis, pp. 69–95, Shropshire W.Jr. and Mohr H. (eds.) Springer-Verlag, Berlin.

    Google Scholar 

  • Gaba V. and Black M. (1987) Photoreceptor interaction in plant photomorphogenesis: the limits of experimental techniques and their interpretation. Photochem. Photobiol. 45:151–156.

    Article  CAS  Google Scholar 

  • Hartmann K.M. (1966) A general hypothesis to interpret ‘high energy phenomena’ of photomorphogenesis on the basis of phytochrome. Photochem. Photobiol. 5: 349–366.

    Article  CAS  Google Scholar 

  • Hendricks S.B., Toole E.H., Toole V.K. and Borthwick H.A. (1959) Photocontrol of plant development by the simultaneous excitations of two interconvertible pigments. III. Control of seed germination and axis elongation. Bot. Gaz. 121: 1–8.

    Article  CAS  Google Scholar 

  • Hillman W.S. (1964) Phytochrome levels detectable by in vivo spectrophotometry in plant parts grown or stored in the light. Amer. J. Bot. 51:1102–1107.

    Article  CAS  Google Scholar 

  • Hillman W.S. (1965) Phytochrome photoconversion by brief illumination and the subsequent elongation of etiolated Pisum stem segments. Physiol. Plant. 18: 346–358.

    Article  Google Scholar 

  • Hillman W.S. (1972) On the physiological significance of in vivo phytochrome assay. In: Phytochrome, pp. 573–584, Mitrakos K. and Shropshire W.Jr. (eds.) Academic Press, London.

    Google Scholar 

  • Holmes M.G. (1984) Radiation measurements. In: Techniques in Photomorphogenesis, pp. 81–107, Smith H. and Holmes M.G. (eds.) Academic Press, London.

    Google Scholar 

  • Hilton J.R. and Thomas B. (1987) Photoregulation of phytochrome synthesis in germinating embryos of Avena sativa L. J. Exp. Bot. 38:1704–1712.

    Article  CAS  Google Scholar 

  • Jabben M. (1980) The phytochrome system in light-grown Zea Mays L. Planta 149: 91–96.

    Article  CAS  Google Scholar 

  • Jabben M. and Deitzer G.F. (1978) A method for measuring phytochrome in plants grown in white light. Photochem Photobiol. 27: 799–802.

    Article  CAS  Google Scholar 

  • Jabben M., Heim B. and Schäfer E. (1980) The phytochrome system in light-and dark-grown dicotyledonous seedlings. In: Photoreceptors and Plant Development, pp. 145–158, DeGreef J. (ed.) Antwerp Univ. Press, Antwerp.

    Google Scholar 

  • Jabben M., Beggs C. and Schäfer (1982) Dependence of Pfr/Ptot ratios on light quality and light quantity. Photochem. Photobiol. 35: 709–712.

    Article  CAS  Google Scholar 

  • Johnson C.B., Allsebrook S.M., Carr-Smith H. and Thomas B. (1991) A quantitative approach to the molecular biology of phytochrome action. In: Phytochrome Properties and Biological action, pp. 273–288, Thomas B. and Johnson C.B. (eds.) Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Kazarinova-Fukshansky N., Seyfried M. and Schäfer E. (1985) Distortion of action spectra in photomorphogenesis by light gradient within the plant tissue. Photochem. Photobiol. 41: 689–702.

    Article  Google Scholar 

  • Kelly J.M. and Lagarias J.C. (1985) Photochemistry of 124-kilodalton Avena phytochrome under constant illumination in vitro. Biochemistry 24: 6003–6010.

    Article  CAS  Google Scholar 

  • Kendrick R.E. and Frankland B. (1969) The in vivo properties of Amaranthus phytochrome. Planta 86: 21–32.

    Article  CAS  Google Scholar 

  • Kendrick R.E. and Spruit C.J.P. (1972) Phytochrome decay in seedlings under continuous incandescent illumination. Planta 107: 341–350.

    Article  CAS  Google Scholar 

  • Kendrick R.E. and Spruit C.J.P. (1974) Inverse dark reversion of phytochrome: an explanation. Planta 120: 265–272.

    Article  CAS  Google Scholar 

  • King R.V., Schäfer E., Thomas B. and Vince-Prue D. (1982) Photoperiodism and rhythmic responses to light. Plant Cell Environ. 5: 395–404.

    Article  Google Scholar 

  • Konomi K., Abe H. and Furuya M. (1987) Changes in content of phytochrome I and II apoprotein in embryonic axes of pea seeds during imbibition. Plant Cell Physiol. 28:1443–1451.

    CAS  Google Scholar 

  • Lagarias J.C, Kelly J.M., Cyr K.L. and Smith W.O. (1987) Comparative photochemical analysis of highly purified 124-kilodalton oat and rye phytochromes in vitro. Photochem. Photobiol. 46: 5–13.

    Article  CAS  Google Scholar 

  • Mancinelli A.L. (1989) Interaction between cryptochrome and phytochrome in higher plant photomorphogenesis. Amer. J. Bot. 76:143–154.

    Article  Google Scholar 

  • Mancinelli A.L. and Rabino I. (1978) The high irradiance responses of plant photomorphogenesis. Bot. Rev. 44:129–180.

    Article  CAS  Google Scholar 

  • Mancinelli A.L., Rossi F. and Moroni A. (1992) Phytochrome photoconversion in vivo: effect of the initial Pfr/Ptot ratio. Photochem. Photobiol. 56: 593–598.

    Article  CAS  Google Scholar 

  • Pratt L.H. (1983) Assay of photomorphogenic photoreceptors. In: Encyclopedia of Plant Physiology, New Series, Vol. 16A, Photomorphogenesis, pp. 154–177, Shropshire W.Jr. and Mohr H. (eds.) Springer-Verlag, Berlin.

    Google Scholar 

  • Pratt L.H. and Butler W.L. (1970) Phytochrome conversion by ultraviolet light. Photochem. Photobiol. 11: 503–509.

    Article  PubMed  CAS  Google Scholar 

  • Quail P.H., Schäfer E. and Marmé D. (1973) De novo synthesis of phytochrome in pumpkin hooks. Plant Physiol. 52: 124–127.

    Article  PubMed  CAS  Google Scholar 

  • Sarkar H.K. and Song P.-S. (1982) Blue light induced phototransformation of phytochrome in the presence of flavin. Photochem. Photobiol. 35: 243–246.

    Article  CAS  Google Scholar 

  • Schäfer E. (1978) Variation in the rates of synthesis and degradation of phytochrome in cotyledons of Cucurbita pepo L. during seedling development. Photochem. Photobiol. 27: 775–780.

    Article  Google Scholar 

  • Schäfer E. and Mohr H. (1980) Changes in the rate of photoconversion of phytochrome during etiolation in mustard seedlings. Photochem. Photobiol. 31: 495–500.

    Article  Google Scholar 

  • Schäfer E., Marchai B. and Marmé D. (1971) On the phytochrome phototransformation kinetics in mustard seedlings. Planta 101: 265–276.

    Article  Google Scholar 

  • Schäfer E., Marchai B. and Marmé D. (1972) In vivo measurements of the phytochrome photostationary state in far red light. Photochem. Photobiol. 15: 457–464.

    Article  Google Scholar 

  • Seyfried M. and Schäfer E. (1985a) Phytochrome macro-distribution, local photoconversion and internal photon fluence rate for Cucurbita pepo L. cotyledons. Photochem. Photobiol. 42: 309–318.

    Article  CAS  Google Scholar 

  • Seyfried M. and Schäfer E. (1985b) Action spectra of phytochrome in vivo. Photochem. Photobiol. 42: 319–326.

    Article  CAS  Google Scholar 

  • Siegelman H.W. and Firer E.M. (1964) Purification of phytochrome from oat seedlings. Biochemistry 3: 418–423.

    Article  PubMed  CAS  Google Scholar 

  • Siegelman H.W. and Hendricks S.B. (1957) Photocontrol of anthocyanin formation in turnip and red cabbage seedlings. Plant Physiol. 32: 393–398.

    Article  PubMed  CAS  Google Scholar 

  • Spruit C.J.P. and Kendrick R.E. (1972) On the kinetics of phytochrome photoconversion in vivo. Planta 103: 319–326.

    Article  CAS  Google Scholar 

  • Spruit C.J.P. and Mancinelli A.L. (1969) Phytochrome in cucumber seeds. Planta 83: 303–310.

    Article  Google Scholar 

  • Stone H.J. and Pratt L.H. (1979) Characterization of the destruction of phytochrome in the red-absorbing form. Plant Physiol. 63: 680–682.

    Article  PubMed  CAS  Google Scholar 

  • Thomas B. and Dickinson H.G. (1979) Evidence for two photoreceptors controlling growth in de-etiolated seedlings. Planta 146: 545–550.

    Article  Google Scholar 

  • Tokuhisa J.G. and Quail P.H. (1987) The levels of two distinct species of phytochrome are regulated differently during germination in Avena sativa L. Planta 172: 371–377.

    Article  CAS  Google Scholar 

  • VanDerWoude W.J. (1985) A dimeric mechanism for the action of phytochrome: evidence from photothermal interactions in lettuce seed germination. Photochem Photobiol. 42: 655–661.

    Article  Google Scholar 

  • VanDerWoude W.J. (1987) Application of the dimeric model of phytochrome action to high irradiance responses. In: Phytochrome and Photoregulation in Plants, pp.249–258, Furuya M. (ed.) Academic Press, Tokyo.

    Google Scholar 

  • Vierstra R.D. and Quail P.H. (1983) Photochemistry of 124-kilodalton Avena phytochrome in vitro. Plant Physiol. 72: 264–267.

    Article  PubMed  CAS  Google Scholar 

  • Vince-Prue D. (1975) Photoperiodism in Plants, McGraw-Hill, London.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mancinelli, A.L. (1994). The physiology of phytochrome action. In: Kendrick, R.E., Kronenberg, G.H.M. (eds) Photomorphogenesis in Plants. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1884-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1884-2_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-2551-2

  • Online ISBN: 978-94-011-1884-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics