Skip to main content

Scanning tunneling microscopy

  • Chapter
Scanning Tunneling Microscopy

Part of the book series: Perspectives in Condensed Matter Physics ((PCMP,volume 6))

Abstract

Presented here is an overview of the present status and future prospects of scanning tunneling microscopy. Topics covered include the physical basis of the scanning tunneling microscope, its instrumentation aspects, and its use for structural and spectroscopic imaging—on a scale which extends to atomic dimensions. Associated experimental and theoretical studies are reviewed, including several which suggest potential applicability of this new type of microscope to a relatively broad range of biological, chemical, and technological areas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References and notes

  1. G. Binnig and H. Rohrer, “Scanning Tunneling Microscopy,” Hely. Phys. Aria 55, 726 (1982).

    Google Scholar 

  2. R. H. Fowler and L. Nordheim, “Electron Emission in Intense Electric Fields.” Proc. Roy. Soc. Land. A 119 173 (1928): J. Frenkel. “On the Electrical Resistance of Contacts Between Solid Conductors” Phys. Rev. 36, 1604 (1930).

    Google Scholar 

  3. L. Esaki. “New Phenomenon in Narrow Germanium p-n Junctions.” Phys. Rev. 109 603 (1958): I. Giaever, “Energy Gap in Superconductors Measured by Electron Tunneling,” Phys. Rev. Lett. 5 147 (1960).

    Google Scholar 

  4. I. Giaever, “Electron Tunneling and Superconductivity,” Rev. Mod. Phys. 46 245 (1974).

    Article  ADS  Google Scholar 

  5. R. Young. J. Ward, and F. Scire, “The Topografiner: An Instrument for Measuring Surface Microtopography,” Rev. Sc,, Instrum. 43, 999 (1972); W. A. Thompson and S. F. Hanrahan, “Thermal Drive Apparatus for Direct Vacuum Tunneling Experiments,” Rev. Sci. Instrum. 47 1303 (1976); E. C. Teague, “Room Temperature Gold-Vacuum-Gold Tunneling Experiments,” Bull. Amer. Phys. Soc. 23 290 (1978); U. Poppe, “Tunneling Experiments on a Single Crystal of ErRh4B4,” Physica B & C108, 805 (1981); for references on the GaAs probe tunneling method see G. Guntherodt, W. A. Thompson, and F. Holtzberg, “Electron Tunneling into Intermediate-Valence Materials,” Phys. Rev. Lett. 49 1030 (1982).

    Google Scholar 

  6. The workshop was held in Oberlech, Austria, under the auspices of the IBM Europe Institute, July 1–5 1985.

    Google Scholar 

  7. J. Simmons, “Generalized Formula for the Electric Tunnel Effect Between Similar Electrodes Separated by a Thin Insulating Film,” J. Appl. Phys. 34 1793 (1963).

    Article  ADS  Google Scholar 

  8. See, e.g., C. B. Duke, “Tunneling in Solids,” Academic Press, Inc., New York, 1969; E. L. Wolf, “Electron Tunneling Spectroscopy,” Rep. Prog. Phys. 41, 1439 (1978).

    Article  Google Scholar 

  9. R. C. Jaklevic and J. Lambe, “Molecular Vibration Spectra by Electron Tunneling,” Phys. Rev. Len. 17 1139 (1966); idem, Tunneling Spectroscopy: Capabilities, Applications, and New Techniques, P. Hansma, Ed., Plenum Press, New York, 1982.

    Google Scholar 

  10. J. Bardeen, “Tunneling from a Many-Particle Point of View,” Phys. Rev. Lett. 6 57 (1961).

    Article  ADS  Google Scholar 

  11. E. Stoll, A. Baratoff, A. Selloni, and P. Camevali, “Current Distribution in the Scanning Vacuum Tunneling Microscope: A Free Electron Model,” J Phys. C 17, 3073 (1984).

    Article  ADS  Google Scholar 

  12. G. Binnig, H. Rohrer, Ch. Gerber, and E. Stoll, “Real-Space Observation of the Reconstruction of Au(I00),” Surf. Sci. 144 321 (1984).

    Article  ADS  Google Scholar 

  13. J. B. P. Williamson, “Microphotography of Surfaces,” Proc. Inst. Mech. Eng. London 182 21 (1967–68): see also the American National Standard Surface Texture, ANSI B46.1 (1978 Edition).

    Google Scholar 

  14. G. Binnig, H. Fuchs, J. Kiibler, F. Salvan. and A. R. Williams, “Scanning Tunneling Microscope Spectroscopy and the Low-Energy Excitation Spectrum of NiO,” unpublished work; R. Garcia. J. J. Saenz, and N. Garcia, “Conductivity and Structure of Thin Oxide Layers Grown on a Metal Substrate: Scanning Tunneling Microscopy in NiO on Ni(100),” Phys. Rev. B 33, 4439 (1986).

    Google Scholar 

  15. H. H. Farrell and M. Levinson. “Scanning Tunneling Microscope as a Structure Modifying Tool,” Phys. Rev. B 31 3593 (1985).

    Article  ADS  Google Scholar 

  16. Dieter W. Pohl, “Some Design Criteria in Scanning Tunneling Microscopy,” IBM J. Res. Develop. 30 pp. 417–427 (1986, this issue).

    Article  Google Scholar 

  17. Hans-Werner Fink. “Mono-Atomic Tips for Scanning Tunneling Microscope.” IBM J RCS Develop. (to be published in Sept. 1986).

    Google Scholar 

  18. Sang-11 Park and C. F. Quatc. “Tunneling Microscopy of Graphite in Air.” Appl. Phys. Len. 48, 112 (1986); A. Bryant. D. P. E. Smith. and C. F. Quate. “Imaging in Real Time with the Tunneling Microscope.” Appl. Phys. Lett. 48, 832 (1986).

    Google Scholar 

  19. G. Binnig. H. Rohrer. Ch. Gerber. and E. Weibel, “Vacuum Tunneling.” Physica 109 & 110B 2075 (1982); idem, “Tunneling Through a Controllable Vacuum Gap,” Appl. Phys Lea. 40, 178 (1982).

    Google Scholar 

  20. G. Binnig and H. Rohrer, “The Scanning Tunneling Microscope,” Sri. Amer. 253, 50 (1985).

    Google Scholar 

  21. Ch. Gerber. G. Binnig, H. Fuchs, O. Marti. and H. Rohrer. “Scanning Tunneling Microscope Combined with a Scanning Electron Microscope,” Rev. Sri. Instrum. 57, 221 (1986).

    Article  ADS  Google Scholar 

  22. D. P. E. Smith and S. A. Elrod. “Magnetically Driven Micropositioners.” Rev. Sri. Instrum. 56 1970 (1985).

    Article  ADS  Google Scholar 

  23. M. Ringger, B. W. Corb, H. R. Hidber. R. SchIngl, R. Wiesendanger, A. Stemmer. L. Rosenthaler, A. J. Brunner. P. Oelhafen. and H.-J. Güntherodt. “STM Activity at the University of Basel,” IBM J. Res. Develop. (to be published in Sept. 1986).

    Google Scholar 

  24. Roy F.Willis, M.C. Payne. J.B. Payne. M. D.Pashley. and J. H. Coombs. “Vacuum Tunneling Microscopy-A Status Report.” Festkörper Probleme XXV, p. 699. P. Grosse, Ed., Friedr. Vieweg & Soh Braunschweig/Wiesbaden, Federal Republic of Germany, 1985.

    Chapter  Google Scholar 

  25. J. Moreland. S. Alexander. M. Cox.. R. Sonnenfeld, and P. Hansma, “Squeezable Electron Tunnel Junctions,” Appl. Plus. Lett. 43, 387 (1983);1. Moreland and P. K. Hansma. “Electromagnetic Squeezer for Compressing Squeezable Electron Tunnel Junctions,” Rev. Sri. Instrum. 55, 399 (1984): P. K. Hansma, “Squeezable Tunneling Junctions,” IBM J. Res. Develop. 30 pp. 370–373 (1986. this issue).

    Google Scholar 

  26. J. E. Demuth, R. J. Flamers. R. M. Tromp, and M. E. Welland. “A Scanning Tunneling Microscope for Surface Science Studies,” IBM J. Res. Develop. 30 pp. 396–402 (1986, this issue); idem, “A Simplified Scanning Tunneling Microscope for Surface Science Studies,” J. lac. Sri. Technol. A, accepted for publication.

    Google Scholar 

  27. B. Drake. R. Sonnenfeld, J. Schneir, P. K. Hansma, G. Slough. and R. V. Coleman, “A Tunneling Microscope for Operation in Air and Fluids,” Rev. Sci. Instrum. 57 441 (1986).

    Article  ADS  Google Scholar 

  28. G. F. A. van de Walle, J. W. Gerritsen, H. van Kempen, and P. Wyder, “High-Stability Tunneling Microscope,” Rev. Sri. Instrum. 56 1573 (1985).

    Article  ADS  Google Scholar 

  29. P. Muralt, D. W. Pohl. and W. Denk, “Wide-Range, LowOperating-Voltage, Bimorph STM: Application as Potentiometer,” IBM J. Res. Develop. (to be published in Sept. 1986).

    Google Scholar 

  30. G. Binnig and H. Rohrer, “Scanning Tunneling Microscopy.” Surf. Sri. 126 236 (1983).

    Article  ADS  Google Scholar 

  31. A. L. de Lozanne, S. A. Elrod, and C. F. Quate, “Spatial Variation in the Superconductivity of Nb,Sn Measured by Low-Temperature Tunneling Microscopy,” Phys. Rev. Lett. 54, 2433 (1985).

    Article  ADS  Google Scholar 

  32. R. M. Feenstra and A. P. Fein. “Scanning Tunneling Microscopy of Cleaved Semiconductor Surfaces,” IBM J. Res Develop. (to be published in Sept. 1986).

    Google Scholar 

  33. R. S. Becker, J. Golovchenko, and B. S. Swartzentruber, “Electron Interferometry at Crystal Surfaces,” Phys. Rev. Lett. 55 987 (1985).

    Article  ADS  Google Scholar 

  34. J. K. Gimzewski, A. Humbert. J. G. Bednorz, and B. Reihl. “Silver Films Condensed at 300 and 90 K: Scanning Tunneling Microscopy of Their Surface Topography,” Phys. Rev. Lett. 55, 951 (1985).

    Article  ADS  Google Scholar 

  35. H. R. Ott, Institute for Solid State Physics, ETH, Zurich, Switzerland, and H. Rohrer. unpublished work.

    Google Scholar 

  36. S. Vieira, “Behavior and Calibration of Some Piezoelectric Ceramics Used in the Scanning Tunneling Microscope,” IBM J. Res. Develop. (to be published in Sept. 1986).

    Google Scholar 

  37. G. Binnig, H. Rohrer, Ch. Gerber, and E. Weibel, “7 x 7 Reconstruction on Si(I II) Resolved in Real Space,” Phys. Rev. Lett. 50, 120 (1983); idem, (111) Facets as the Origin of Reconstructed Au(110) Surfaces,” Surf. Sci. 131, L379 (1983); A. M. Baro, G. Binnig, H. Rohrer, Ch. Gerber, E. Stoll. A. Baratoff, and F. Salvan, “Real-Space Observation of the 2 x 1 Structure of Chemisorbed Oxygen on Ni(110) by Scanning Tunneling Microscopy,” Phys. Rev. Lea. 52, 1304 (1984).

    Google Scholar 

  38. R. S. Becker, J. A. Golovchenko, and B. S. Swartzentruber, “Tunneling Images of Germanium Surface Reconstructions and Phase Boundaries,” Phys. Rev. Lett. 54 2678 (1985); idem, “Tunneling Images of the 5 x 5 Surface Reconstruction on Ge-Si(III),” Phys. Rev. B 32, 8455 (1985); R. S. Becker, J. A. Golovchenko, E. G. McRae, and B. Swartzentruber, “Tunneling Images of Atomic Steps on the Si(1 1 1) 7 x 7 Surface,” Phys. Rev. Lett. 55, 2028 (1985).

    Google Scholar 

  39. R. V. Coleman, B. Drake, P. K. Hansma, and G. Slough, “Charge-Density Waves Observed with a Tunneling Microscope,” Phys. Rev. Lett. 55, 394 (1985).

    Article  ADS  Google Scholar 

  40. R. J. Behm, W. Hoesler, E. Ritter, and G. Binnig, “Correlation Between Domain Boundaries and Surface Steps–An STM Study on Reconstructed Pt(100),” Phys. Rev. Lett. 56 228 (1986); W. Hösier, R. J. Behm, and E. Ritter, “Defects on the Pt(100) Surface and Their Influence on Surface Reactions–A Scanning Tunneling Microscopy Study,” IBM J. Res. Develop. 30, pp. 403–410 (1986, this issue).

    Google Scholar 

  41. R. M. Feenstra and A. P. Fein, “Surface Morphology of GaAs(110) by Scanning Tunneling Morphology,” Phys. Rev. B 32, 1394 (1985); R. M. Feenstra, W. A. Thompson, and A. P. Fein, “Real-Space Observation of π Bonded Chains and Surface Disorder on Si(I I I) 2 x 1,” Phys. Rev. Lett. 56, 608 (1986): R. M. Feenstra, W. A.Thompson, and A. P. Fein, “Scanning Tunneling Microscopy Studies of Si(III) 2 x 1 Surfaces,” J. Vac. Sci. Technol. AII 4 (May/June 1986).

    Google Scholar 

  42. R. M. Tromp, R. J. Hamers, and J. E. Demuth, “Si(I00) Dimer Structure Observed with Scanning Tunneling Microscopy,” Phys. Rev. Lett. 55. 1303 (1985); R. J. Hamers, R. M. Tromp, and J. E. Demuth, “Scanning Tunneling Microscopy of Si(100),” unpublished work: idem, “Atomic and Electronic Contributions to Si(111) (7 x 7) Scanning Tunneling Microscopy Images,” Phys. Rev. B, accepted for publication.

    Google Scholar 

  43. G. Binnig, H. Fuchs, Ch. Gerber, H. Rohrer, E. Stoll, and E. Tosatti, “Energy-Dependent State-Density Corrugation of a Graphite Surface as Seen by Scanning Tunneling Microscopy,” Europhys. Lett. 1 31 (1986).

    Article  ADS  Google Scholar 

  44. J. Tersoff and D. R. Hamann, “Theory and Application for the Scanning Tunneling Microscope.” Phys. Rev. Lett. 50, 1998 (1983);1. Tersoff and D. R. Hamann, “Theory of the Scanning Tunneling Microscope,” Phys. Rev. B 31, 805 (1985).

    Article  ADS  Google Scholar 

  45. A. Baratoff, “Theory of Scanning Tunneling Microscopy (STM),” Europhys. Conf. Abstr. 7B, 364 (1983).

    Google Scholar 

  46. N. Garcia, C. Ocal, and F. Flores, “Model Theory for Scanning Tunneling Microscopy: Application to Au(I10) (1 X 2),” Phys. Rev. Lett. 50 2002 (1983); N. Garcia and F. Flores, “Theoretical Studies for Scanning Tunneling Microscopy,” Physica 127B, 137 (1984).

    Google Scholar 

  47. A. Baratoff, “Theory of Scanning Tunneling Microscopy-Methods and Approximations,” Physica 127B, 143 (1984).

    Google Scholar 

  48. E. Stoll. “Resolution of the Scanning Tunneling Microscope,” Surf Sci. 143, L41 1 (1984).

    Article  Google Scholar 

  49. G. Binnig, N. Garcia, H. Rohrer. J. M. Soler, and F. Flores, “Electron-Metal-Surface Interaction Potential with Vacuum Tunneling: Observation of the Image Force,” Phys. Rev. B 30. 4816 (1984).

    Article  ADS  Google Scholar 

  50. N. Garcia. “Theory of Scanning Tunneling Microscopy and Spectroscopy: Resolution, Image, and Field States and Thin Oxide Layers,” IBM J. Res. Develop. (to be published in Sept. 1986).

    Google Scholar 

  51. R. Smoluchowski, “Anisotropy of the Electronic Work Function of Metals,” Phys. Rev. 60 661 (1941); N. D. Lang. “Density Functional Formalism and the Electronic Structure of Metal Surfaces,” Solid State Phys. 28 225 (1973).

    Google Scholar 

  52. Cleaved pyrolithic graphite appears to become the ideal “test surface” for STM. A lateral resolution under 2Å is readily achievable in vacuum and air (J. Gimzewski, H. GUntherodt, A. Humbert, and H. Salemink, private communications) and even under water [R. Sonnenfeld and P. K. Hansma, “Atomic Resolution Microscopy in Water,” Science 232, 211 (April 11 1986).] The crucial role of the electronic surface structure itself in obtaining such high resolution on special surfaces such as that of graphite is pointed out by J. Tersoff, “Anomalous Corrugation in Scanning Tunneling Microscopy of Low-Dimensionality Semiconductors and Semimetals,” Phys. Rev. Lett. 56 (1986).

    Google Scholar 

  53. N. Lang, “Vacuum Tunneling Current from an Adsorbed Atom,” Phys. Rev. Lett. 55, 230 (1985); idem, “Electronic Structure and Tunneling Current for Chemisorbed Atoms,” IBM J. Res. Develop. 30, pp. 374–379 (1986, this issue); idem, “Theory of Single Atom Imaging in the Scanning Tunneling Microscope,” Phys. Rev. Lett. 56 1164 (1986).

    Google Scholar 

  54. G. Binnig, H. Rohrer, F. Salvan, Ch. Gerber, and A. M. Barb, “Revisiting the 7 × 7 Reconstruction of Si(111),” Surf Sci. 157, L373 (1985).

    Article  Google Scholar 

  55. A. Humbert, J. K. Gimzewski, and B. Reihl, “Post-Annealing of Coldly Condensed Ag Films: Influence of Pyridine Preadsorption,” Phys. Rev. B 32 4252 (1985).

    Article  ADS  Google Scholar 

  56. Th. Berghaus, H. Neddermeyer, and St. Tosch, “A Scanning Tunneling Microscope for the Investigation of the Growth of Metal Films on Semiconductor Surfaces,” IBM J. Res. Develop. (to be published in Sept. 1986).

    Google Scholar 

  57. R. Miranda, N. Garcia, A. M. Baró, R. Garcia, J. L. Pena, and H. Rohrer, “Technological Applications of Scanning Tunneling Microscopy at Atmospheric Pressure,” Appl. Phys. Lett 47, 367 (1985).

    Article  ADS  Google Scholar 

  58. S. Chiang and R. J. Wilson, “Scanning Tunneling Microscopy,” Improved Methods for Examining the Submicron World, Plenum Press (to be published in 1986); idem, “Construction of a UHV Scanning Tunneling Microscope,” IBM J. Res. Develop. (to be published in Sept. 1986).

    Google Scholar 

  59. R. M. Feenstra and G. S. Oehrlein, “Surface Morphology of Oxidized and Ion-Etched Silicon by Scanning Tunneling Microscopy,” J. Vac. Sci. Technol. B 3, 1136 (1985); idem, Appl. Phys. Lett. 47 97 (1985).

    Google Scholar 

  60. J. K. Gimzewski, A. Humbert, D. W. Pohl, and S. Vepiek, “Scanning Tunneling Microscopy of Nanocrystalline Silicon Surfaces,” Surf. Sci. 168, 795 (1986).

    Article  ADS  Google Scholar 

  61. M. Ringger, H. R. Hidber, R. Schlögl, P. Oelhafen. Güntherodt, K. Wandelt. and G. Ertl, “Vacuum Tunneling Applied to the Surface Topography of a Pd(I00) Surface.” Proceedings of the 17th International Conference on Low Temperature Physics LT-17 25 (1984), North-Holland, Amsterdam.

    Google Scholar 

  62. A. M. Baró, R. Miranda, and J. L. Carrascosa, “Application to Biology and Technology of the Scanning Tunneling Microscope Operated in Air at Ambient Pressure,” IBM J. Res. Develop. 30, pp. 380–386 (1986, this issue).

    Article  Google Scholar 

  63. N. Garcia, A. M. Barb, R. Miranda, H. Rohrer, Ch. Gerber, R. Garcia Cantu. and J. L. Pena, “Surface Roughness Standards, Obtained with the Scanning Tunneling Microscope Operated at Atmospheric Air Pressure,” Metrologia 21 135 (1985).

    Article  ADS  Google Scholar 

  64. G. Binnig and H. Rohrer, “Scanning Tunneling Microscopy,” Trends in Physics 1984, J. Janta and J. Pantoflicek, Eds., European Physical Society, 1985. pp. 38–46.

    Google Scholar 

  65. A. M. Baró. R. Miranda. J. Alaman, N. Garcia. G. Binnig, H. Rohrer, Ch. Gerber. and. J. L. Carrascosa “Determination of Surface Topography of Biological Specimens at High Resolution by Scanning Tunneling Microscopy.” Nature 315, 253 (1985).

    Article  ADS  Google Scholar 

  66. F. Flores and N. Garcia. “Voltage Drop in the Experiments of Scanning Tunneling Microscopy for Si,” Phys. Rev. B 30 2289 (1984).

    Article  ADS  Google Scholar 

  67. G. Binnig, K. H. Frank. H. Fuchs. N. Garcia. B. Reihl. H. Rohrer. F. Salvan. and A. R. Williams, “Tunneling Spectroscopy and Inverse Photoemission: Image and Field States,” Phys. Rev. Lett. 55, 991 (1985).

    Article  ADS  Google Scholar 

  68. W. J. Kaiser and R. C. Jaklesic. “Scanning Tunneling Microscopy of Surfaces.” Bull. Amer. Phys. Soc. 30, 309 (1985): idem “Spectroscopy of Electronic States of Metals with a Scanning Tunneling Microscope.” IBM J. Res. Develop. 30, pp. 410–416 (1986, this issue).

    Google Scholar 

  69. A. Baratoff, G. Binnig, H. Fuchs. F. Saban. and E. Stoll. “Tunneling Microscopy and Spectroscopy of Semiconductor Surfaces and Interfaces” Surf Sei. 168, 734 (1986).

    Article  ADS  Google Scholar 

  70. S. A.Elrod. A. Bryant. A. L. de Lozanne. S. Park. D. Smith. And C. F. Quate. “Tunneling Microscopy from 3(0 to 4.2 K.” 11311 J. Re,. Devehp. 30, pp. 387–395 (1986. this issue).

    Google Scholar 

  71. R. S. Becker. J. A. Goloschenko. D. R. Hamann. and B. S. Swanzentruher, “Real-Space Observation of Surface States on Si(111) 7 x 7 with the Tunneling Microscope.” Phys. Rev. Len. 55, 2032 (1985).

    Article  ADS  Google Scholar 

  72. K. H. Gundlach. “Zur Berechnung des Tunnelstromes durch eine Trapezformige Potentialstufe.” Solid-State Electron. 9, 949 (1966)

    Article  ADS  Google Scholar 

  73. N. Garcia and J. Solana. “Surface States in a One-Dimensional Crystal.” Surf Sei. 36, 262 (1973): P. M. Echenique and J. B. Pendry. “The Existence and Detection of Rydberg States at Surfaces.” J. Phys. C 11, 2056 (1978): for further references see N. Garcia. B. Reihl. K. H. Frank, and A. R. Williams. “Image States: Binding Energies. Effective Masses, and Surface Corrugation.” Php. Rev. Len. 54, 591 (1985).

    Google Scholar 

  74. G. Binnig. N. Garcia, and H. Rohrer, “Conductivity Sensitivity of Inelastic Scanning Tunneling Microscopy,” Phys. Rev. B 32, 1336 (1985).

    Article  ADS  Google Scholar 

  75. B. N. J. Persson and J. E. Demuth. “Inelastic Electron Tunneling from a Metal Tip.” Solid State Commun.57, 769 (1986). F. Flores. P. M. Echenique, and R. H. Ritchie. “Energy Dissipation Processes in the Scanning Tunneling Microscopy.” Universidad AutOnoma de Madrid. unpublished work.

    Google Scholar 

  76. E.Stoll.“Information-and Image-Processing of Scanning Tunneling Microscope Data,” Proceeding.s of the 2nd International Technical S3mposium on Optical and ElectroOptical Applied Science and Engineering. Cannes, Dec. 2–6, 1985. in press.

    Google Scholar 

  77. A. Baratoff. G. Binnig. H. Fuchs. H. Rohrer, E. Stoll. and F. Saban. “Interpretation of Scanning Tunneling Spectroscopic (STS) Images–Applications to 7 x 7 Si(111).”Europhys. Conf Abstr. 10B, 0–31 (1986): idem. Surf Sci. (accepted for publication); R. 3. Hamers. R. M. Tromp, and J. E. Demuth. “Surface Electronic Structure of Si(111)7 x 7 Resolved in Real Space.” Phys. Rev. Lett. 56 (1986).

    Google Scholar 

  78. E. Conrad and M. B. Webb. “Xe and Kr Adsorption on the Si(111) 7 x 7 Surface,” Surf Sci. 129, 37 (1983); J. E. Demuth and A. J. Schell-Sorokin, “Rare Gas Titration Studies of Skill) Surfaces.” J. rac. Sci. Technol. A2, 808 (1983).

    Google Scholar 

  79. G. Binnig and H. Rohrer, “Scanning Tunneling Microscopy.” Surf: Sci. 126 236 (1983).

    Article  ADS  Google Scholar 

  80. M. S. Khaikin and A. M. Trojanovsky, “A Scanning Tunneling Microscope with a Modulated Tunneling Gap Operating in a Liquid Medium.” Pis’rna Zh. Tech. Phys. 11, 1236 (1985).

    Google Scholar 

  81. P. Muralt and D. W. Pohl, “Scanning Tunneling Potentiometry,”Appl. Phys. Len. 48 514 (1986).

    Article  ADS  Google Scholar 

  82. G. Binnig. H. Fuchs, and E. Stoll, “Surface Diffusion of Oxygen Atoms Individually Observed by STM,” Surf. Sci. (1986, in press).

    Google Scholar 

  83. M. E. Welland and R. H. Koch. “Spatial Location of Electron Trapping Defects on Silicon by Scanning Tunneling Microscopy.” Appl. Phi’s. Lett. 48, 724 (1986).

    Article  ADS  Google Scholar 

  84. M. D. Pashley, J. B. Pethica, and J. Coombs, “Scanning Tunneling Microscope Studies,” Surf Sci 152/153, 27 (1985).

    Google Scholar 

  85. J. H. Coombs and J. B. Pethica. “Properties of Vacuum Tunneling Currents: Anomalous Barrier Heights,” IBM J. Res. Develop. (to be published in Sept. 1986).

    Google Scholar 

  86. R. Gomer, “Extensions of the Field Emission Fluctuation Method for the Determination of Surface Diffusion Coefficients.” J. Appl. Phys. A39, I (1986).

    ADS  Google Scholar 

  87. D. W. Pohl, W. Denk, and M. Lanz, “Optical Stethoscopy: Image Recording with Resolution A/20,” ANA Phys. Len. 44 651 (1984): U. Durig. D. W. Pohl. and F. Rohner. Near-Field Optical Scanning Microscopy. J. Appl. Phys. 59 (1986): idem.. “Near-Field Optical Scanning Microscopy with Tunnel-Distance Regulation.” IBM J. Res. Derelop (to be published in Sept. 1986).

    Google Scholar 

  88. G. Binnig. C. F. Quate. and Ch. Gerber. “The Atomic Force Microscope.” Illy,. Rev. Len. 56, 930 (1986).

    Article  ADS  Google Scholar 

  89. J. M. Soler. A. M. Baró. N. Garcia. and H. Rohrer. “Interatomic Forces in Scanning Tunneling Microscopy: Giant Corrugations of the Graphite Surface.” unpublished work;

    Google Scholar 

  90. U. Dürig. J. Gimzewski. and D. W. Pohl. “Experimental Observations of Forces Acting During Scanning Tunneling Microscopy.” unpublished work.

    Google Scholar 

  91. David W. Abraham. H. Jonathon Mamin, Eric Ganz. and John Clarke. “Surface Modification with the Scanning Tunneling Microscope.” IBM J. Res. Develop. (to be published in Sept. 1986).

    Google Scholar 

  92. H. van Kempen and G. F. A. van de Walle, “Applications of a High-Stability Scanning Tunneling Microscope.” IMB J. Res. Develop. (to be published in Sept. 1986).

    Google Scholar 

  93. M.Ringer. H.R.Hidber R. Schlögl, P. Oelhafen. and H.-J.Göntherodt. “Nanometer Lithography with the Scanning Tunneling Microscope.” Appl. Php. Left. 46, 832 (1985).

    Article  ADS  Google Scholar 

  94. M. A. McCord and R. F. W. Pease. “Lithography with the Scanning Tunneling Microscope.” J. rac. Sci. Technol. B4, 86 (1986).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 International Business Machines Corporation

About this chapter

Cite this chapter

Binning, G., Rohrer, H. (1986). Scanning tunneling microscopy. In: Neddermeyer, H. (eds) Scanning Tunneling Microscopy. Perspectives in Condensed Matter Physics, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-1812-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-1812-5_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-2065-4

  • Online ISBN: 978-94-011-1812-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics