Skip to main content

Part of the book series: NATO ASI Series ((NSSE,volume 255))

Abstract

A brief review of some salient convective processes occurring in the ocean by isolated buoyancy sources is given. In particular, deep-ocean convection, lead-induced motions, under-ice convection, and hydrothermal vents are considered. The results of some laboratory experiments aimed at understanding physical processes associated with oceanic convection are also outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • ANDERSON, D.L. 1960 Growth rate of sea ice. J. Glaciology, 31, 1170–1172.

    Google Scholar 

  • ATKINSON, J.F. and WAKE, A. 1987 Double-diffusive convection under sea ice. J. Cold Regions Engng., 2, 89–95.

    Article  Google Scholar 

  • BARNES, H.T. 1928 Ice Engineering. Renouf, Montreal.

    Google Scholar 

  • BROECKER, W. S. and PENG, T-H. 1982 Tracers in the Sea. Lamont Doherty Geological Observatory Publication, Eldigio Press, New York.

    Google Scholar 

  • COLE, G.S. and WINGRAD, W.C. 1964 Thermal convection during horizontal solidification of pure metals and alloys. J. Inst. Metals, 93, 153–164.

    Google Scholar 

  • COX, G.F.N. and WEEKS, W.F. 1975 Brine drainage and initial salt entrainment in sodium chloride ice. CRREL Research Report 345, Cold Regions Research Engineering Laboratory, Hanover, New Hampshire, USA.

    Google Scholar 

  • DICKINSON, S.C. and LONG, R.R. 1983 Oscillating grid turbulence including the effects of rotation. J. Fluid Mech., 126, 315–333.

    Article  ADS  Google Scholar 

  • FARHADIEH, R. and TANKIN, R.S. 1972 Interferometric study of freezing of sea water. J. Geophys. Res., 77(2), 1647–1657.

    Article  ADS  Google Scholar 

  • FERNANDO, H.J.S. and CHING, C.Y. 1993 Lead-induced convection: A laboratory perspective. J. Marine Syst., (in press).

    Google Scholar 

  • FERNANDO, H.J.S. CHEN, R-R. and BOYER, D.L. 1991 Effects of rotation on convective turbulence. J. Fluid Mech., 228, 513–547.

    ADS  Google Scholar 

  • FOSTER, T.D. 1969 Experiments on haline convection induced by freezing of salt water. J. Geophys. Res., 74, 6,967–6,974.

    Google Scholar 

  • FOSTER, T.D. 1972 Haline convection in polynyas and leads. J. Phys. Oceanogr., 2, 462–469.

    Article  ADS  Google Scholar 

  • FUKUSAKO, S. and YAMADA, M. 1993 Recent advances in research on water-freezing and icemelting problems. Exp. Thermal and Fluid Sci., 6, 90–105.

    Article  Google Scholar 

  • GASCARD, J.C. 1978 Mediterranean Deep Water formation -baroclinic instabilites and oceanic eddies. Oceanol. Acta., 1(3), 315–330.

    Google Scholar 

  • GASCARD, J.C. 1990 Deep convection and deep water formation: progress and directioas. EOS Trans. Amer. Geophys. Union, 71(49), 1837–1839.

    Article  ADS  Google Scholar 

  • HARRISON, J.D. 1965 Measurement of brine droplet migration in ice. J. Appl. Phys., 32, 3811–3815.

    Article  ADS  Google Scholar 

  • HOGG, N.G. 1973 The preconditioning phase of MEDOC 1969, Part II: Topographic effects. Deep Sea Res., 20, 449–459.

    Google Scholar 

  • HOPFINGER, E.J. 1989 Turbulence and vortices in rotating fluids. Theor. and Appl. Mech., 117–138.

    Google Scholar 

  • HOPFINGER, E.J. GRIFFITHS, R.W. and MORY, M. 1983 The structure of turbulence in homogeneous and stratified rotating fluids. J. Méc. Theor. Appl., 44, 21–82.

    Google Scholar 

  • JOHANNESSEN, O.M. SANDVEN, S. and JOHANNESSEN, J.A. 1991 Deep convection and deep water formation in the oceans. (eds P C Chu and J C Gascard), 87–105, Elsevier, Amsterdam.

    Chapter  Google Scholar 

  • KILLWORTH, P.D. 1976 The mixing and spreading phases of MEDOC I. Progr. Oceanogr., 7, 59–90.

    Article  ADS  Google Scholar 

  • KILLWORTH, P.D. 1983 Deep convection in the world ocean. Rev. of Geophys. and Space Phys., 21, 1–26.

    Article  ADS  Google Scholar 

  • KOERNER, R.M. 1973 The mass balance of the sea ice of the Arctic Ocean. J. Glaciology, 12 (65), 173–185.

    ADS  Google Scholar 

  • KOWALIK, Z. and MATTHEWS, J.B. 1983 Numerical study of the water movement driven by brine rejection from nearshore Arctic ice. J. Geophys. Res., 88, 2953–2958.

    Article  ADS  Google Scholar 

  • KOZO, T.L. 1983. Initial model results for Arctic Mixed Layer circulation under a refreezing lead. J. Geophys. Res., 88, 2926–2934.

    Article  ADS  Google Scholar 

  • LAKE, R.A. and LEWIS, E.L. 1970 Salt rejection by sea ice during growth. J. Geophys. Res., 75, 583–597.

    Article  ADS  Google Scholar 

  • LEWIS, E.L. and WALKER, E.R. 1976 The water structure under a growing sea ice sheet. J. Geophys. Res., 75, 6836–6845.

    Article  ADS  Google Scholar 

  • LIGHTHILL, M.J. 1953 Theoretical consideration on free convection in tubes. Quart. J. Mech. Appl. Math., 6, 398–439.

    Article  MATH  Google Scholar 

  • MARTIN, S. 1979 A field study of brine drainage and oil entrainment in first-year sea ice. J. Glaciology, 22, 473–501.

    ADS  Google Scholar 

  • MARTIN, B.W. and COHEN, H. 1954 Heat transfer by free convection in an open thermosyphon tube. Brit. J. Appl. Phys., 5, 91–98.

    Article  ADS  Google Scholar 

  • MAYKUT, G.A. 1978 Energy exchange over young sea ice in the central Arctic. J. Geophys. Res., 83, 3646–3658.

    Article  ADS  Google Scholar 

  • MEDOC Group 1970 Observation of formation of Deep Water in the Mediterranean Sea, 1969. Nature, 227, 1037–1040.

    Article  ADS  Google Scholar 

  • MORISON, J. McPHEE, M. CURTIN, T and PAULSON, C. 1992 The oceanography of leads. J. Geophys. Res., 97(C7), 11199–11218.

    Article  ADS  Google Scholar 

  • NOH, Y. FERNANDO, H.J.S. and CHING, C.Y. 1992 Flow induced by the impingement of a thermal on a density interface. J. Phys. Oceanogr., 22(10), 1207–1220.

    Article  ADS  Google Scholar 

  • RUBINSKY, B. LEE, C. and CHAW, M. 1993 Experimental observations and theoretical studies on solidification processes in saline solutions. Exper. Thermal and Fluid Sci., 6, 157–167.

    Article  Google Scholar 

  • RUDELS, B. 1990. Haline convection in the Greenland Sea. Deep Sea Res., 37, 9, 1491–1511.

    Article  Google Scholar 

  • SANCHEZ, O. RAYMOND, D.J. LIBERSKY, L. and PETSCHEK, A.G. 1989 The development of thermals from rest. J. Atmos. Sci., 46, 2280–2292.

    Article  ADS  Google Scholar 

  • SANKEY, T. 1973 The formation of Deep Water in the Northwestern Mediterranean. Progr. Oceanogr., 6, 59–179.

    Article  Google Scholar 

  • SCORER, R.S. 1957 Experiments on convection of isolated masses of buoyant fluid. J. Fluid Mech., 2, 583–594.

    Article  ADS  Google Scholar 

  • SIMPSON, J.E. 1987 Gravity Currents in the Environment and the Laboratory, Ellis Horwood Ltd., New York.

    Google Scholar 

  • SMITH, S.D. MUENCH, R.D. and PEASE, C.H. 1990 Polynyas and leads: An overview of physical processes and environment. J. Geophys. Res., 95(C6), 9461–9479.

    Article  ADS  Google Scholar 

  • STEWART, R.W. 1963 Some aspects of turbulence in polar seas. Proc. Arctic Basin Sympos., October 1962, 122–127, Arctic Institute of North America, Washington DC.

    Google Scholar 

  • STOMMEL, H. 1972 Deep winter-time convection in the Western Mediterranean Sea. Studies in Physical Oceanography: A tribute to Georg Wust on his 80th birthday, 2, 207–218.

    Google Scholar 

  • STOMMEL, H. VOORHIS, D. and WEBB, D.C. 1971 Submarine clouds in the deep ocean. Amer. Sci., 59(6), 716–722.

    ADS  Google Scholar 

  • SWALLOW, J.C. and CASTON, G.F. 1973 The preconditioning phase of MEDOC 69. Part I: observations. Deep-Sea Res., 20, 429–448.

    Google Scholar 

  • TILLER, W.A. JACKSON, K.A. RUTLER, J.W. and CHALMERS, B. 1953 The redistribution of solute atoms during the solidification of metals. Acta Met., 1, 428–437.

    Article  Google Scholar 

  • TURNER, J.S. 1973 Buoyancy Effects in Fluids, Cambridge University Press, Cambridge.

    Book  MATH  Google Scholar 

  • UNTERSTEINER, N. 1967 Natural desalination and equilibrium salinity profiles of old sea ice. Physics of Snow and Ice, Proc. Inf’l Conf. Low Temperature Sci., 1 (ed H Oura), 569–572, Hokkaido University, Sapporo, Japan.

    Google Scholar 

  • WADHAMS, P. 1981 The ice cover of the Greenland and Norwegian Seas. Rev. of Geophys. and Space Phys., 19, 345–393.

    Article  ADS  Google Scholar 

  • WAGNER, C. 1954 Theoretical analysis of diffusion of solutes during the solidification of alloys. J. Metals, 200, 154–160.

    Google Scholar 

  • WAKATSUCHI, M. 1977 Experiments on haline convection occurring under growing sea ice (in Japanese with English summary). Low Temp. Sci., Series A, 35, 249–258.

    Google Scholar 

  • WAKATSUCHI, M. and Ono, N. 1983 Measurements of salinity and volume of brine excluded from growing sea ice. J. Geophys. Res., 88, C5, 2943–2951.

    Article  ADS  Google Scholar 

  • WALIN, G. 1993 On the formation of ice on deep weakly stratified water. Tellus, 45(a), 143–157.

    Article  Google Scholar 

  • WEEKS, W.F. and LEE, D.S. 1962 The salinity distribution in young sea ice. Arctic, 12, 92–108.

    Google Scholar 

  • WEEKS, W.F. and LOFGREN, G. 1967 The effective solute distribution coefficient during the freezing of NaCl solutions. Physics of Snow and Ice, Proc. Inf’l Conf. Low Temp. Sci., 1, 579.

    Google Scholar 

  • WETTLAUFER, J.S. 1992a Directional solidification of salt water: Deep and shallow cells. Europhys. Lett., 19, 337–342.

    Article  ADS  Google Scholar 

  • WETTLAUFER, J.S. 1992b Singular behavior of the neutral modes during directional solidification. Phys. Fluids A, 46, 6568–6578

    Google Scholar 

  • YIH, C.S. 1959 Thermal instability of viscous fluids. Quart. Jour. Appl. Math., 17, 25–42.

    MathSciNet  MATH  Google Scholar 

  • ZUBOV, N.N. 1938 Morskiye Vody i l’dy [Sea Water and Ice], Gidrometeoizdat [Hydrological and Meteorological Publishing House], Moscow,

    Google Scholar 

  • ZUBOV, N.N. 1943 Arctic Ice, U.S. Navy Electronics Laboratory, San Diego.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Fernando, H.J.S., Davies, P.A., Ayotte, B.A., Mofor, L.A., Ching, C.Y. (1994). Turbulent Plumes, Thermals and Convection in Oceans. In: Davies, P.A., Neves, M.J.V. (eds) Recent Research Advances in the Fluid Mechanics of Turbulent Jets and Plumes. NATO ASI Series, vol 255. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0918-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0918-5_22

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4396-0

  • Online ISBN: 978-94-011-0918-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics