Skip to main content

Creep fracture

  • Chapter
Design for Creep
  • 377 Accesses

Abstract

Fracture is failure initiated by a defect or crack. A defect is simply any deviation from the nominal component specification, geometric or material, which cannot be evaluated entirely by continuum methods without taking into account the specific form of the local deviation. Problems involving crack-like defects therefore require a special analytical tool which includes the presence of the defect in the mathematical model. This tool is fracture mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ainsworth, R.A. (1992) Practical Aspects of the Calculation and Application of C*, Materials at High Temperatures, 10, No. 2.

    Google Scholar 

  2. Ainsworth, R.A. and Budden, P.J. (1992) Approximate Inelastic Analysis of Defective Components, Nucl. Engng. Design, 133.

    Google Scholar 

  3. Ainsworth, R.A., Ruggles, M.B. and Takahashi, Y. (1992) Flaw Assessment Procedure for High Temperature Reactor Components, J. Pressure Vessel Technol, 114.

    Google Scholar 

  4. Barenblatt, G.I. (1962) The Mathematical Theory of Equilibrium Cracks in Brittle Fracture, Adv. Appl. Mech., 1.

    Google Scholar 

  5. Bilby, B.A., Cottrell, A.H. and Swinden, K.H. (1965) The Spread of Plastic Yield From a Notch, Proc. R. Soc., A285.

    Google Scholar 

  6. Burdekin, F.M. and Dawes, M.G. (1971) Practical Use of Linear Elastic and Yielding Fracture Mechanics, Conference Proceedings on Appl. of Fract. Meck, I. Mech. Eng., London.

    Google Scholar 

  7. British Standards Institution (1980) Published Document 6493.

    Google Scholar 

  8. Dugdale, D.S. (1960) Yielding of Steel Sheets Containing Slits, J. Mech. Phys. Solids. 8.

    Google Scholar 

  9. Dowling, N.E. (1976) Geometry Effects and the J-Integral Approach to Elastic-Plastic Fatigue Crack Growth, Cracks and Fracture, ASTM STP 601.

    Google Scholar 

  10. Eshelby, J.D. (1956) The Continuum Theory of Lattice Defects, in Solid State Physics, vol. 3 (eds F. Seitz and D. Turnbull), Academic Press, New York.

    Google Scholar 

  11. Ewalds, H.L. and Wanhill, R.J.H. (1986) Fracture Mechanics, Edward Arnold/DUM, London.

    Google Scholar 

  12. Griffith, A.A. (1921) The Phenomena of Rupture and Flow in Solids, Phil. Trans. R. Soc., A221.

    Google Scholar 

  13. Hutchinson, J.W. (1968) Singular Behaviour at the End of a Tensile Crack in Hardening Material, J. Mech. Phys. Solids, 16.

    Google Scholar 

  14. Irwin, G.R. (1957) Analysis of Stresses and Strains near the End of a Crack Traversing a Plate, J. Appl. Mech., 24.

    Google Scholar 

  15. Kanninen, M.F. and Popelar, CH. (1985) Advanced Fracture Mechanics, Oxford University Press/Clarendon Press, New York and Oxford.

    MATH  Google Scholar 

  16. Kumar, V., German, M.D. and Shih, C.F. (1981) An Engineering Approach for Elastic–Plastic Fracture Analysis, EPRI Report NP-1931.

    Google Scholar 

  17. Marriott, D.L. (1988) Efficient Representation of Fracture Mechanics for Design Application, in Materials 88—Proceedings Inst. Met Conference on Materials and Engineering Design, Inst. Metals, London.

    Google Scholar 

  18. McClung, R.C. (1987) Fatigue Crack Closure and Crack Growth Outside the Small Yielding Regime, PhD thesis, University of Illinois at Urbana/Champaign.

    Google Scholar 

  19. Milne, I., Ainsworth, R.A., Dowling, A.R. and Stewart, A.T. (1988) Assessment of the Integrity of Structures Containing Defects, J. Pressure Vessels Piping., 32.

    Google Scholar 

  20. Newman, J.C. Jr. and Raju, I.S. (1981) An Empirical Stress Intensity Factor Equation for the Surface Crack, Eng. Fract. Mech., 15.

    Google Scholar 

  21. Nikbin, K.M., Smith, D.J. and Webster, G.A. (1984) Prediction of Creep Crack Growth from Uniaxial Creep Data, Proc. R. Soc., A396.

    Google Scholar 

  22. Nuclear Electric plc (1991) The R5 Procedures.

    Google Scholar 

  23. Paris, P.C. and Erdogan, F. (1963) A Critical Analysis of Crack Propagation Laws, J. Basic Eng., D85.

    Google Scholar 

  24. Parker, A.P. (1981) The Mechanics of Fracture and Fatigue, E. & F. N. Spon, London.

    MATH  Google Scholar 

  25. Reidel, R. and Rice, J.R. (1980) Tensile Cracks in Creeping Solids, in Proceedings 12th ASTM Fracture Mechanics Conference, ASTM STP 700, ASTM, Philadelphia.

    Google Scholar 

  26. Rice, J.R. (1968) A Path Independent Integral and the Approximate Analysis of Strain Concentrations by Notches and Cracks, J. Appl. Mech., 35.

    Google Scholar 

  27. Rice, J.R. and Rosengren, G.F. (1968) Plane Strain Deformation Near a Crack Tip in a Power Law Hardening Material, J. Mech. Phys. Solids, 16.

    Google Scholar 

  28. Rolfe, S.T. and Barsom, J.M. (1977) Fracture and Fatigue Control in Structures: Applications of Fracture Mechanics, Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  29. Rooke, D.P. and Cartwright, D.J. (1976) Compendium of Stress Intensity Factors, HMSO, London.

    Google Scholar 

  30. Smith, R.N., Watson, P. and Topper, T.H. (1979) A Stress-Strain Function for Fatigue of Metals, J. Materials, 5.

    Google Scholar 

  31. Tada, H., Paris, P.C. and Irwin, G. (1973) The Stress Analysis of Cracks Handbook, Del Research, Hellertown, PA.

    Google Scholar 

  32. Wareing, J. (1983) Mechanisms of High Temperature Fatigue and Creep-Fatigue Failure in Engineering Materials, in Fatigue at High Temperature (ed. R.P. Skelton), Applied Science, London.

    Google Scholar 

  33. Wells, A.A. (1961) Unstable Crack Propagation in Metals, Cleavage and Fast Fracture, The Crack Propagation Symposium, Cranfield, UK.

    Google Scholar 

  34. Westergaard, H.M. (1939) Bearing Pressures and Cracks, J. Appl. Mech., 6, A49–53.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Penny, R.K., Marriott, D.L. (1995). Creep fracture. In: Design for Creep. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0561-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0561-3_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4248-2

  • Online ISBN: 978-94-011-0561-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics