Skip to main content

Continuum damage

  • Chapter
Design for Creep

Abstract

This chapter covers continuing irreversible material damage caused by mechanical loading and environmental features. This results eventually in unacceptably high rates of change in component damage leading to rupture. The term damage could result from cavity formation (ω), micro cracks (a) and gross deformation (δ), for example, and be strain (ε) or age (t) induced. Some or all of these forms of damage could be accelerated by creep at temperatures above about 0.3 T m, as well as by other processes such as fatigue, corrosion, spalling, irradiation. These features are depicted in Fig. 5.1, together with their stochastic nature which is inevitable. Typical lifetime expectations could be hours to decades of years but, expressed in terms of life fractions, the form of the schematic is much the same for different situations. The designer’s task is to provide for a safe life using Codes as guidelines. The operator’s task is to seek a useful life by extending the design life, to do so with a minimum of interruptions in the operation and with close bounds on failure probabilities. In some cases, e.g. combined high temperatures and high loadings, Codes do not exist. In all cases, there is likely to be a shortage of (even) bulk materials behaviour data. Laboratory tests from which these data are obtained are often performed outside the regimes of component operation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andresen, P. and Ford, P. (1994) Fundamental Modeling of Environmental Cracking for Improved Design and Lifetime Evaluation in BWRs, in Proceedings Conference, Material Ageing and Life Assessment of Components, CAPE ′93, Int. J. Pressure Vessels Piping, 59.

    Google Scholar 

  2. Bailey, R.W. (1926) J. Inst. Metals, 35, No. 27.

    Google Scholar 

  3. Bannantine, J.A., Comer, J.J. and Handrock, J.L. (1990) Fundamentals of Metal Fatigue Analysis, Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  4. Basquin, O.H. (1910) The Exponential Law of Endurance Tests. Proc. ASTM, 10, Part 2.

    Google Scholar 

  5. Bradford, S.A. (1987) Fundamentals of Corrosion in Gases, in ASM Metals Handbook, 9th ed., vol. 13.

    Google Scholar 

  6. Calladine, CR. (1963–4) A Rapid Method for Estimating the Greatest Stress in a Structure Subject to Creep, Proc. I. Mech. E., 178.

    Google Scholar 

  7. Cane, B.J. and Middleton, C.J. (1981) Intergranular Creep-Cavity Formation in Low-Alloy Bainitic Steels, Metal Sci., 15.

    Google Scholar 

  8. Challenger, K.D., Miller, A.K. and Langdon, R.L. (1981) Elevated Temperature Fatigue with Hold Times in a Low Alloy Steel: A Predictive Correlation, J. Mat. Energy Systems, 3.

    Google Scholar 

  9. Coffin, L.F. Jr (1954) A Study of Cyclic Thermal Stresses in a Ductile Metal, Trans. ASME, 76.

    Google Scholar 

  10. Corum, J.M. and Battiste, R.L. (1992) Predictability of Long-Term Creep and Rupture in a Nozzle-to-Sphere Vessel Model, ASME PVP, 230.

    Google Scholar 

  11. Dyson, B.F. and McLean, M. (1983) Particle Coarsening, σ0 and Tertiary Creep, Acta Metall., 31.

    Google Scholar 

  12. Dyson, B.F. (1976) Metal Sci., 10.

    Google Scholar 

  13. Dyson, B.F. and Ogersby, S. (1988) Modeling Synergy between Creep and Corrosion for Engineering Design, in Proceedings Inst: Metals Conference on Materials and Engineering Design, London.

    Google Scholar 

  14. Dyson, B.F., Loveday, M.S. and Rogers, M.J. (1976) Grain Boundary Cavitation Under Various States of Applied Stress, Proc. R. Soc., London, A349.

    Google Scholar 

  15. Ewalds, H.L. and Wanhill, R.J.H. (1986) Fracture Mechanics, Edward Arnold/DUM, New York.

    Google Scholar 

  16. Frost, H.J. and Ashby, M.F. (1982) Deformation-Mechanism Maps, Pergamon, Oxford.

    Google Scholar 

  17. Glen, J. (1958) A New Approach to the Problem of Creep. J. Iron Steel Inst., 189.

    Google Scholar 

  18. Graham, A. and Walles, K.F.A. (1961) On the Extrapolation of Creep Data, NGTE Report R247.

    Google Scholar 

  19. Hales, R. (1988) Physical Mechanisms of Fracture in Combined Creep and Fracture, in Proceedings Inst. Metals Conference on Materials and Engineering Design, London.

    Google Scholar 

  20. Hancock, J.W. (1976) Metal Sci., 10.

    Google Scholar 

  21. Huddieston, R.L. (1985) An Improved Multiaxial Creep-Rupture Strength Criterion, Trans. ASME, 108 (No. 4).

    Google Scholar 

  22. Hull, D. and Rimmer, D.E. (1959) Phil. Mag., 4.

    Google Scholar 

  23. Hult, J. (1986) Engineering Damage Mechanics: Past and Present, Appl. Solid Mechanics, 1.

    Google Scholar 

  24. Ishida, Y. and McLean, D. (1967) Metal Sci. J., 1.

    Google Scholar 

  25. Johnson, A.E., Henderson, J. and Khan, B. (1962) Complex Stress and Creep Relaxation and Fracture of Metallic Alloys. HMSO, Edinburgh.

    Google Scholar 

  26. Jones, W.B. and Dan Den Avyle, J.A. (1980) Substructure and Strengthening Mechanisms in (math) and (math) Steels, Metall. Trans., Section A, 11a.

    Google Scholar 

  27. Kachanov, L.M. (1958) On Creep Rupture Time, Izv. Acad. Nauk SSSR, Otd. Tech. Nauk, No. 8.

    Google Scholar 

  28. Kachanov, L.M. (1986) Introduction to Continuum Damage Mechanics, Martinus Nijhoff, Boston.

    MATH  Google Scholar 

  29. Lemaitre, J. and Chaboche, J.-L. (1990) Mechanics of Solid Materials. Cambridge University Press, Cambridge, UK.

    Book  MATH  Google Scholar 

  30. Le May, I. (1981) Principles of Mechanical Metallurgy, Elsevier, New York.

    Google Scholar 

  31. Manjoine, M.J. (1984) Effect of Pulsating Loads on th Creep Characteristics of Al. Alloy 14ST, Proc. ASTM, 49.

    Google Scholar 

  32. Manson, S.S. (1953) Behaviour of Materials Under Conditions of Thermal Stress, NACA TN 2933.

    Google Scholar 

  33. Manson, S.S. (1965) Exp. Mech., 5, No. 7.

    Google Scholar 

  34. McLean, D. (1962) Mechanical Properties of Materials, Wiley, New York.

    Google Scholar 

  35. McClintok, F.A. (1968) Damage by Void Growth, J. Appl. Meech., 35.

    Google Scholar 

  36. Miner, M.A. (1945) Cumulative Damage in Fatigue, Trans. ASME, 67.

    Google Scholar 

  37. Nadai, A. (1963) Theory of Flow and Fracture in Solids, vol. 2, McGraw-Hill, New York.

    Google Scholar 

  38. Neuber, H. (1961) Theory of Stress Concentration for Shear Strain Prismatical Bodies with Arbitrary Non-Linear Stress-Strain Law, Trans. ASME, Series E, 28.

    Google Scholar 

  39. Nikbin, K.M., Smith, D.J. and Webster, G.A. (1984) Prediction of Creep Crack Growth from Uniaxial Creep Data, Proc. R. Soc., A396.

    Google Scholar 

  40. Nuclear Electric pic. (1991) The R5 Procedures.

    Google Scholar 

  41. Orowan, E. (1947) J. West Scotland Iron and Steel Inst., 54, No. 45.

    Google Scholar 

  42. Palmgren, A. (1924) Durability of Ball Bearings, ZDVI, 68, No. 14.

    Google Scholar 

  43. Penny, R.K. and Weber, M.A. (1992) Robust Methods of Life Assessment During Creep, in Proceedings Conference ‘Materials Ageing and Life Assessment’, CAPE ′91, J. Pressure Vessel Piping, 50.

    Google Scholar 

  44. Penny, R.K. (1974) The Usefulness of Engineering Damage Parameters During Creep, J. Metals Materials, 8.

    Google Scholar 

  45. Penny, R.K. and Marriott, D.L. (1971) Design for Creep, McGraw-Hill, Maidenhead, UK.

    Google Scholar 

  46. Penny, R.K. and Marriott, D.L. (1974) Creep of Pressure Vessels, Paper c204/73, in 1st I.Mech.E/ASME Joint Int. Conf. on Creep and Fatigue in Elevated Temperature Applications, Philadelphia, 1973, Sheffield 1974, Proc. I. Mech. E., London.

    Google Scholar 

  47. Plastow, B., Toft, L.H. and Yeldham, D.E. (1974) Service Experience and Evaluation of Steam-Pipe Performance in the Midlands Region CEGB, in I. Mech. E. Conference on Creep Behaviour of Piping, London.

    Google Scholar 

  48. Rabotnov, Yu.N. (1969) Creep Problems in Structural Members, North-Holland, Amsterdam.

    MATH  Google Scholar 

  49. Rice, J.R. and Tracey, D.M. (1969) J. Mech. Phys. Solids, 17.

    Google Scholar 

  50. Robinson, D.N. (1984) Constitutive Relationships for Anisotropic High-Temperature Alloys, Nuclear Engng. Design, 83.

    Google Scholar 

  51. Robinson, E.L. (1938) Effect of Temperature Variations on the Creep Strength of Steels, Trans. ASME, 60.

    Google Scholar 

  52. Seeger, T. and Heuler, P. (1980) Generalised Application of Neuber’s Rule, J. Test. Eval., 8 No. 4.

    Google Scholar 

  53. Sdobyrev, V.P. (1958) Long-Term Strength of Alloy E1-437B Under Complex Stress, Izv. An SSSr, OTN4.

    Google Scholar 

  54. Simonen, F.A. and Jaske, C.E. (1985) A Computational Model for Predicting the Life of Tubes Used in Petro-Chemical Heater Service, in Residual Life Assessment, NDE and Nuclear Heat Exchanger Materials, Proc. ASME PVP Conference, New Orleans, USA, ASME PVP, 98–1.

    Google Scholar 

  55. Stamm, H. and von Estorff, U. (1992) Determination of Creep Damage in Steels, Proceedings 5th Int. Conference on Creep of Materials, Florida, USA.

    Google Scholar 

  56. Viswanathan, R. (1989) Damage Mechanisms and Life Assessment of High Temperature Components, ASM International, Metals Park, Ohio.

    Google Scholar 

  57. Dhalla, A.K. (ed.) (1991) WRC Bulletin 363, Recommended Practices in Elevated Temperature Design: A Compendium of Breeder Reactor Experiences (1970–1987), vol. II, WRC, New York.

    Google Scholar 

  58. Zamrik, S.Y. and Davis, D.C. (1990) A Ductility Exhaustion Approach for Axial Fatigue-Creep Damage Assessment Using Type 316 Stainless Steel, ASME PVP, 215.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Penny, R.K., Marriott, D.L. (1995). Continuum damage. In: Design for Creep. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0561-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0561-3_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4248-2

  • Online ISBN: 978-94-011-0561-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics