Skip to main content

Part of the book series: Forestry Sciences ((FOSC,volume 44-46))

Abstract

Grape (Vitaceae, Vitis spp.) is a deciduous temperate fruit crop of ancient origin. Vitis contains two subgenera, Euvitis Planch., the bunch grape species that all contain 38 somatic chromosomes, and Muscadinia Planch., the muscadine grapes with 40 somatic chromosomes (Einset and Pratt, 1975; Winkler et al., 1974). Species in each subgenus are interfertile but are only partially fertile between subgenera (Jelenkovic and Olmo, 1969). Estimates of the number of Euvitis species range from 28 to 43. These are separated into an American group of 18 to 28 species, an Asian group of 10 to 15 species and a European or central Asian group of one species (Vitis vinifera L.) (Einset and Pratt, 1975). Muscadinia contains three species; Vitis rotundifolia Michaux., Vitis munsoniana Simpson, both native to the southeastern United States and Vitis popenoeii Fennell, native to central America, which comprise the muscadine grape varieties. With the exception of muscadine grapes, which are morphologically and genetically distinct, most cultivated grapes are either pure strains or hybrids of V. vinifera and account for the vast majority of world production. Hybrids of Vitis labrusca L., an eastern North American native (Galet, 1988), and V. vinifera, some with additional native species parentage, are in widespread production in the northeastern United States (Cahoon, 1986). Complex hybrids between V. vinifera and various native American species form a series of disease resistant French-American hybrids (Einset and Pratt, 1975). Certain species and interspecific hybrids are utilized exclusively as rootstocks. A number of other Vitis species are used in breeding programs to adapt high-quality vinifera germplasm to suboptimal environmental regions (Alleweldt and Possingham, 1988).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Alleweldt, G. and J.V. Possingham, 1988. Progress in grapevine breeding. Theo. App. Genet. 75: 669–673.

    Google Scholar 

  • Barbier, M. and R. Bessis, 1987. Isolation and culture of grape leaf protoplasts (Vitis vinifera L., var. Chardonnay). Bulletin de 1’ Office International de la vigne et du Vin: 679–680, 765–775 (In French with English summary).

    Google Scholar 

  • Barbier, M. and R. Bessis, 1988. Effets de differents facteurs contributant a 1‘amelioration de l’isolement de protoplasts a’ partir de feuilles de vigne (Vitis vinifera L.). Bulletin de la Societe Botanique de France 135: 251–261 (In French with English summary).

    Google Scholar 

  • Barbier, M. and R. Bessis, 1990. Isolation and culture of grapevine cv. Chardonnay leaf protoplasts. Euphytica 47: 39–44.

    Article  Google Scholar 

  • Baribault, T.J., K.G.M. Skene and S.N. Steele, 1989. Genetic transformation of grapevine cells. Plant Cell Rep. 8: 137–140.

    Article  CAS  Google Scholar 

  • Baribault, T.J., K.G.M. Skene, P.A. Cain and S.N. Steele, 1990. Transgenic grapevines: regeneration of shoots expressing β-glucuronidase. J. Exp. Bot. 41: 1045–1049.

    Article  CAS  Google Scholar 

  • Barton, K.A., H.R. Whiteley and N.S. Yang, 1987. Bacillus thuringensis delta-endotoxin expressed in transgenic Nicotiana tabacum provides resistance to lepidopteran insects. Plant Physiol. 85: 1103–1109.

    Article  PubMed  CAS  Google Scholar 

  • Bewley, J.D. and M. Black, 1985. Seeds: Physiology of Development and Germination. Plenum, New York.

    Google Scholar 

  • Brault, V., T. Candresse, O. le Gall, R.P. Delbos, M. Lanneau and J. Dunez, 1993. Genetically engineered resistance to grapevine chrome mosaic nepovirus. Plant Mol. Biol. 21: 89–97.

    Article  PubMed  CAS  Google Scholar 

  • Cahoon, C.A., 1986. The concord grapes. Fruit Varieties J. 40: 106–107.

    Google Scholar 

  • Colby, S.M., A.M. Juncosa and C.P. Meredith, 1991. Cellular differences in Agrobacterium susceptibility and regenerative capacity restrict the development of transgenic grapevines. J. Amer. Soc. Hort. Sci. 116: 356–361.

    Google Scholar 

  • Coutos-Thevenot, P., I. Goebel-Tourand, M.-C. Mauro, J.-P. Jouanneau, M. Boulay, A. Deloire and J. Guern, 1992a. Somatic embryogenesis from grapevine cells. I -Improvement of embryo development by changes in culture conditions. Plant Cell Tiss. Org. Cult. 29: 125–133.

    Article  Google Scholar 

  • Coutos-Thevenot, P., O. Maes, T. Jouenne, M.-C. Mauro, M. Boulay, A. Deloire and J. Guern, 1992b. Extracellular protein patterns of grapevine cell suspensions in embryogenic and non-embryogenic situations. Plant Sci. 86: 137–145.

    Article  CAS  Google Scholar 

  • Delannay, X., B.J. LaVallee, R.K. Proksch, R.L. Fuchs, S.R. Sims, J.T. Greenplate, P.G. Marrone, R.B. Dodson, J.J. Augustine, J.G. Layton and D.A. Fischhoff, 1989. Field performance of transgenic tomato plants expressing the Bacillus thuringensis var. kurstaki insect control protein. BioTechnol. 7: 1265–1269.

    Google Scholar 

  • Durham, R.E., G.A. Moore, D.J. Gray and J.A. Mortensen, 1989. The use of leaf GPI and IDH isozymes to examine the origin of polyembryony in cultured ovules of seedless grape. Plant Cell Rep. 7: 669–672.

    Google Scholar 

  • Einset, J. and C. Pratt, 1975. Grapes. In: J. Janick and J.N. Moore (Eds.), Advances in Fruit Breeding, pp. 130–153. Purdue University Press, West Lafayette.

    Google Scholar 

  • Faure, O., 1990. Embryons somatiques de Vitis rupestris et embryons zygotiques de Vitis sp.: Morphologic histologie, histocimie et developpement. Can. J. Bot. 68: 2305–2315.

    Google Scholar 

  • Favre, J.-M., 1977. First results on in vitro production of bud-neoformations in grapevine. Ann. l’Amelior. des Plantes 27: 151–169 (In French with English summary).

    CAS  Google Scholar 

  • Flemion, F, 1937. After-ripening at 5°C favours germination of grape seeds. Contributions of the Boyce Thompson Institute 9: 7–15.

    Google Scholar 

  • Food and Agricultural Organization of the United Nations, 1990. Production Yearbook, Rome.

    Google Scholar 

  • Galet, P., 1988. Cépages et Vignobles de France. Vol. I. Les Vignes Américaines. Imprimerie Charles Déhan, Montpellier.

    Google Scholar 

  • Galet, P. and L.T. Morton, 1990. Introduction: The family Vitaceae and Vitis speciation. In: R.C. Pearson and A.C. Goheen (Eds.), Compendium of Grape Diseases, pp. 2–3. APS Press, St. Paul.

    Google Scholar 

  • Geier, T., A. Beck and W. Preil, 1992. High uniformity of plants from cytogenetically variable embryogenic cultures of poinsettia (Euphorbia pulcherrima Willd ex Klotzch). Plant Cell Rep. 11: 150–154.

    Article  Google Scholar 

  • Goebel-Tourand, I., M.-C. Mauro, L. Sossountoz, E. Miginiac and A. Deloire, 1993. Arrest of somatic embryo development in grapevine: histological characterization and the effect of ABA, BAP and zeatin in stimulating plantlet development. Plant Cell Tiss. Org. Cult. 33: 91–103.

    Article  CAS  Google Scholar 

  • Goussard, P.G. and J. Wiid, 1992. The elimination of fanleaf virus from grapevines using in vitro somatic embryogenesis combined with heat therapy. S. Afr. J. Enol. Vitic. 13: 81–83.

    Google Scholar 

  • Goussard, P.G., J. Wiid and G.G.F. Kasdor, 1991. The effectiveness of in vitro somatic embryogenesis in eliminating fanleaf virus and leafroll associated viruses from grapevines. S. Afr. J. Enol. Vitic. 12: 77–83.

    Google Scholar 

  • Gray, D.J., 1987a. Introduction to the symposium. Proceedings, Symposium on Synthetic Seed Technology for the Mass Cloning of Crop Plants: Problems and Perspectives. HortSci. 22: 796–797.

    Google Scholar 

  • Gray, D.J., 1987b. Quiescence in monocotyledonous and dicotyledonous somatic embryos induced by dehydration. Proceedings, Symposium on Synthetic Seed Technology for the Mass Cloning of Crop Plants: Problems and Perspectives. HortSci. 22: 810–814.

    Google Scholar 

  • Gray, D.J., 1987c. Concluding remarks. Proceedings, Symposium on Synthetic Seed Technology for the Mass Cloning of Crop Plants: Problems and Perspectives. HortSci. 22: 814.

    Google Scholar 

  • Gray, D.J., 1987d. Effects of dehydration and other environmental factors on dormancy in grape somatic embryos. HortSci. 22: 1118 (Abstr.).

    Google Scholar 

  • Gray, D.J., 1988. Ontogeny of grape somatic embryos. HortSci. 23: 807 (Abstr.).

    Google Scholar 

  • Gray, D.J., 1989. Effects of dehydration and exogenous growth regulators on dormancy, quiescence and germination of grape somatic embryos. In Vitro Cell. Dev. Biol. 25: 1173–1178.

    Article  Google Scholar 

  • Gray, D.J., 1990a. Synthetic seed for clonal production of crop plants. In: R.B. Taylorson (Ed.), Recent Advances in the Development and Germination of Seeds, pp. 29–45. Plenum, New York.

    Google Scholar 

  • Gray, D.J., 1990b. Somatic cell culture and embryogenesis in the Poaceae. In: M.J. Kasperbauer (Ed.), Biotechnology in Tall Fescue Improvement, pp. 25–57. CRC Press, Boca Raton.

    Google Scholar 

  • Gray, D.J., 1992. Somatic embryogenesis and plant regeneration from immature zygotic embryos of muscadine grape (Vitis rotundifolia) cultivars. Amer. J. Bot. 79: 542–546.

    Article  Google Scholar 

  • Gray, D.J. and C.M. Benton, 1991. Perennial embryogenic cultures of grape. HortSci. 26: 772.

    Google Scholar 

  • Gray, D.J. and M.E. Compton, 1992. Grape somatic embryo dormancy and quiescence: potential of dehydrated synthetic seeds for germplasm conservation. In: K. Redenbaugh (Ed.), Synseeds: Applications of Synthetic Seeds to Crop Improvement, pp. 367–379. CRC Press, Boca Raton.

    Google Scholar 

  • Gray, D.J. and L.A. Hanger, 1993. Effect of ovule maturity on recovery of zygotic embryos and embryogenic cultures from muscadine grape. HortSci. 28: 227.

    Google Scholar 

  • Gray, D.J., D.W. McColley and M.E. Compton, 1993. High-frequency somatic embryogenesis from quiescent seed cotyledons of Cucumis melo cultivars. J. Amer. Soc. Hort. Sci. 118: 425–432.

    Google Scholar 

  • Gray, D.J. and C.P. Meredith, 1992. Grape. In: F.A. Hammerschlag and R.E. Litz (Eds.), Biotechnology in Perennial Fruit Crops, pp. 229–262. C.A.B. International, Wallingford.

    Google Scholar 

  • Gray, D.J. and J.A. Mortensen, 1987. Initiation and maintenance of long term somatic embryogenesis from anthers and ovaries of Vitis longii “Microsperma”. Plant Cell Tiss. Org. Cult. 9: 73–80.

    Article  Google Scholar 

  • Gray, D.J. and A. Purohit, 1991a. Embryogenesis and development of synthetic seed technology. Crit. Rev. Plant Sci. 10: 33–61.

    Article  Google Scholar 

  • Gray, D.J. and A. Purohit, 1991b. Quiescence and dormancy in somatic embryos. In: Y.P.S. Bajaj (Ed.), Biotechnology in Agriculture and Forestry, Vol. 17, pp. 382–394. Springer-Verlag, Berlin.

    Google Scholar 

  • Gresshoff, P.M. and C.H. Doy, 1974. Derivation of a haploid cell line from Vitis vinifera and the importance of the stage of meiotic development of anthers for haploid culture of this and other genera. Z. Planzenphysiol. 73: 132–141.

    Google Scholar 

  • Gribaudo, I. and A. Schubert, 1990. Grapevine root transformation with Agrobacterium rhizogenes. Proceedings, Fifth International Symposium on Grape Breeding. Vitis Special Issue, 412–418.

    Google Scholar 

  • Guellec, V., C. David, M. Branchard and J. Tempé, 1990. Agrobacterium rhizogenes mediated transformation of grapevine (Vitis vinifera L.). Plant Cell Tiss. Org. Cult. 20: 211–215.

    CAS  Google Scholar 

  • Harst-Langenbucher, M. and G. Alleweldt, 1993. Einfluß verschiedener Vorbehandlungen auf die Induktion somatischer Embryogenese an Antheren der Rebsorte Riesling. Vitis 32: 1–7.

    CAS  Google Scholar 

  • Hirabayashi, T., I. Kozaki and T. Akihama, 1976. In vitro differentiation of shoots from anther callus in Vitis. HortSci. 11: 511–512.

    Google Scholar 

  • Jelenkovic, G. and H.P. Olmo, 1969. Cytogenetics of Vitis. V. Allotetraploids of V. vinifera L. × V. rotundifolia Michx. Vitis 8: 265–279.

    Google Scholar 

  • Krul, W.R., 1984. Recent advances in cloning and genetic engineering of the grapevine. The Maryland Grapevine 4: 10–13.

    Google Scholar 

  • Krul, W.R., 1985. In vitro propagation of grape. United States Patent No. 4,532,733.

    Google Scholar 

  • Krul, W.R., 1988. Recent advances in protoplast culture of horticultural crops: small fruits. Sci. Hort. 37: 231–245.

    Article  Google Scholar 

  • Krul, W.R. and G.H. Mowbray, 1984. Grapes. In: W.R. Sharp, D.A. Evans, P.V. Ammirato, and Y. Yamada (Eds.), Handbook of Plant Cell Culture, Vol 2, pp. 396–434. Macmillan, New York.

    Google Scholar 

  • Krul, W.R. and J.F. Worley, 1977. Formation of adventitious embryos in callus cultures of “Seyvar”, a French hybrid grape. J. Amer. Soc. Hort. Sci. 102: 360–363.

    Google Scholar 

  • Lee, N. and H.Y. Wetzstein, 1988. Protoplast isolation and callus production from leaves of tissue-cultured Vitis spp. Plant Cell Rep. 7: 531–534.

    Article  Google Scholar 

  • Lee, N., H.Y. Wetzstein and C.H. Bornman, 1989. Cortical microtubule organization in Vitis protoplasts as affected by concentration of enzyme isolation medium and duration of incubation. Physiol. Plant 77: 27–32.

    Article  CAS  Google Scholar 

  • Martinelli, L., P. Bragagna, V. Poletti and A. Scienza, 1993. Somatic embryogenesis from leaf-and petiole-derived callus of Vitis rupestris. Plant Cell Rep. 12: 207–210.

    Article  Google Scholar 

  • Matsuta, N., 1992. Effect of auxin on somatic embryogenesis from leaf callus in grape (Vitis spp.). Jpn. J. Breed. 42: 879–883.

    CAS  Google Scholar 

  • Matsuta, N. and T. Hirabayashi, 1989. Embryogenic cell lines from somatic embryos of grape (Vitis vinifera L.). Plant Cell Rep. 7: 684–687.

    CAS  Google Scholar 

  • Mauro, M.O., C. Nef and J. Fallot, 1986. Stimulation of somatic embryogenesis and plant regeneration from anther culture of Vitis vinifera cv. Cabernet-Sauvignon. Plant Cell Rep. 5: 377–380.

    Article  Google Scholar 

  • Mullins, M.G., 1990. Applications of tissue culture to the genetic improvement of grapevines. Proceedings, Fifth International Symposium on Grape Breeding. Vitis Special Issue: 399-407.

    Google Scholar 

  • Mullins, M.G. and K. Rajasekaran, 1980. Plantlets from cultured anthers of vitis species and hybrids. In: Proceedings of the Third International Symposium on Grape Breeding, Davis, pp. 111–119.

    Google Scholar 

  • Mullins, M.G. and C. Srinivasan, 1976. Somatic embryos and plantlets from an ancient clone of grapevine (cv. Cabernet-Sauvignon) by apomixis in vitro. J. Exp. Bot. 27: 1022–1030.

    Article  Google Scholar 

  • Mullins, M.G., F.C.A. Tang and D. Facciotti, 1990. Agrobacterium-meâiated genetic transformation of grapevines: transgenic plants of Vitis rupestris Scheele and buds of Vitis vinifera L. BioTechnol. 8: 1041–1045.

    Article  CAS  Google Scholar 

  • Murashige, T. and F. Skoog, 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15: 473–497.

    Article  CAS  Google Scholar 

  • Nejidat, A., W.G. Clark and R.N. Beachy, 1990. Engineered resistance against plant virus diseases. Physiol. Plant. 80: 662–668.

    Article  Google Scholar 

  • Newton, D.J. and P.G. Goussard, 1990. The ontogeny of somatic embryos from in vitro cultured grapevine anthers. S. Afr. J. Enol. Vitic. 11: 70–81.

    Google Scholar 

  • Nishimura, M., I. Hara-Nishimura and S.P. Robinson, 1984. Isolation of metabofically competent protoplasts from grapevine leaves. Plant Sci. Lett. 37: 171–175.

    Article  CAS  Google Scholar 

  • Nitsch, J.P. and C. Nitsch, 1969. Haploid plants from pollen grains. Science 163: 85–87.

    Article  PubMed  CAS  Google Scholar 

  • Oxtoby, E. and M.A. Hughes, 1990. Engineering herbicide tolerance into crops. Trends in Biotechnol. 8: 61–65.

    Article  CAS  Google Scholar 

  • Pearce, D., R.P. Pharis, K. Rajasekaran and M.G. Mullins, 1987. Effects of chilling and ABA on [3H]Gibberellin A4 metabolism in somatic embryos of grape (Vitis vinifera L. × V. rupestris Scheele). Plant Physiol. 80: 381–385.

    Article  Google Scholar 

  • Rajasekaran, K. and M.G. Mullins, 1979. Embryos and plantlets from cultured anthers of hybrid grapevines. J. Exp. Bot. 30: 399–407.

    Article  Google Scholar 

  • Rajasekaran, K. and M.G. Mullins, 1983a. The origin of embryos and plantlets from cultured anthers of hybrid grapevines. Amer. J. Enol. Vitic. 34: 108–113.

    CAS  Google Scholar 

  • Rajasekaran, K. and M.G. Mullins, 1983b. Influence of genotype and sex-expression on formation of plantlets by cultured anthers of grapevines. Agronomie 3: 233–238.

    Article  Google Scholar 

  • Rajasekaran, K., J. Vine and M.G. Mullins, 1982. Dormancy in somatic embryos and seeds of Vitis: changes in endogenous abscisic acid during embryogeny and germination. Planta 154: 139–144.

    Article  CAS  Google Scholar 

  • Robacker, C., 1993. Somatic embryogenesis and plant regeneration from muscadine leaf explants. HortSci. 28: 53–55.

    Google Scholar 

  • Scorza, R., J.M. Cordts, D.J. Gray, D.W. Ramming and R.L. Emershad, 1995. Transformation of “Thompson Seedless” grape. (in preparation).

    Google Scholar 

  • Scorza, R., J.M. Cordts, D.W. Ramming and R.L. Emershad, 1995. Transformation of grape (Vitis vinifera L.) Zygotic-derived somatic embryos and regeneration of transgenic plants. Plant Cell Rep. (in press).

    Google Scholar 

  • Shah, D.M., R.B. Horsch, H.J. Klee, G.M. Kishore, J.A. Winter, N.E. Tumer, C.M. Hironaka, P.R. Sanders, C.S. Gasser, S. Aykent, N.R. Siegel, S.G. Rogers and R.T. Fraley, 1986. Engineering herbicide tolerance in transgenic plants. Science 233: 478–482.

    Article  PubMed  CAS  Google Scholar 

  • Shimizu, J.-L, 1985. Cell regeneration and division of grape mesophyll protoplasts. J Plant Physiol. 119: 419–424.

    Article  CAS  Google Scholar 

  • Srinivasan, C. and M.G. Mullins, 1980. High-frequency somatic embryo production from unfertilized ovules of grapes. Sci. Hort. 13: 245–252.

    Article  Google Scholar 

  • Stamp, J.A. and C.P. Meredith, 1988a. Somatic embryogenesis from leaves and anthers of grapevine. Sci. Hort. 35: 235–250.

    Article  Google Scholar 

  • Stamp, J.A. and C.P. Meredith, 1988b. Proliferative embryogenesis from zygotic embryos of grapevine. J. Amer. Soc. Hort. Sci. 113: 941–945.

    Google Scholar 

  • Stark, D.M. and R.N. Beachy, 1989. Protection against potyvirus infection in transgenic plants -evidence for broad spectrum resistance. BioTechnol. 7: 1257–1262.

    Google Scholar 

  • Takeno, K., M. Koshioka, R.P. Pharis, K. Rajasekaran and M.G. Mullins, 1983. Endogenous gibberellin-like substances in somatic embryos of grape (Vitis vinifera × Vitis rupestris) in relation to embryogenesis and the chilling requirement for subsequent development of mature embryos. Plant Physiol. 73: 803–808.

    Article  PubMed  CAS  Google Scholar 

  • Theodoropoulos, P.A. and K.A. Roubelakis-Angelakis, 1990. Progress in protoplast isolation and culture from virus-free axenic shoot cultures of Vitis vinifera L. Plant Cell Tiss. Org. Cult. 20: 15–23.

    Article  Google Scholar 

  • Vilaplana, M. and M.G. Mullins, 1989. Regeneration of grapevines (Vitis spp.) in vitro: Formation of adventitious buds on hypocotyls and cotyledons of somatic embryos. J. Plant Physiol. 134: 413–419.

    Article  CAS  Google Scholar 

  • Winkler, A.J., J.A. Cook, W.M. Kliewer and L.A. Lider, 1974. General Viticulture, Revised Edition. University of California Press, Berkeley.

    Google Scholar 

  • Wright, D.C., 1985. Factors affecting isolation of protoplasts from leaves of grape (Vitis vinifera). Plant Cell Tiss. Org. Cult. 4: 95–100.

    Article  Google Scholar 

  • Zou, C.J. and P.F. Li, 1981. Induction of pollen plants of grape (Vitis vinifera L.). Acta Bot. Sinica 23: 79–81 (In Chinese with English description of figures and table).

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gray, D.J. (1995). Somatic embryogenesis in grape. In: Jain, S.M., Gupta, P.K., Newton, R.J. (eds) Somatic Embryogenesis in Woody Plants. Forestry Sciences, vol 44-46. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0491-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0491-3_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4220-8

  • Online ISBN: 978-94-011-0491-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics