Skip to main content

Part of the book series: NATO ASI Series ((ASHT,volume 3))

  • 195 Accesses

Abstract

In this contribution we review some basic optical properties of semiconductor quantum wells. Emphasize is brought on the excitonic effect which dominates the optical properties of semiconductor nanostructures close to their band edge. Even if a good knowledge of the basic properties of such structures has now been reached, the detailed understanding of the mechanism of excitonic luminescence, for example, is still one of the main issues of the research, in view of the ultimate goal of obtaining efficient devices operating at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bastard, G. (1988) Wave Mechanics Applied to Semiconductor Heterostructures, Les Editions de Physique, Les Ulis.

    Google Scholar 

  2. Ekenberg, U. (1989) Nonparabolicity effects in a quantum well: Sublevel shift, parallel mass, and Landau levels, Phys. Rev. B40, 7714.

    Google Scholar 

  3. Meynadier, M.H., Delalande, C., Bastard, G., Voos, M., Alexandre, F., Lievin, J.L. (1985) Size quantization and band-offset determination in GaAs-GaAlAs separate confinement heterostructures, Phys. Rev. B31, 5539.

    Google Scholar 

  4. Miller, D.A.B., Chemla, D.S., Eilenberger, D.J., Smith, P.W., Gossard, A.C., Tsang, W.T. (1982) Large room-temperature optical nonlinearity in GaAs/Ga1-xAlxAs multiple quantum well structures, Appl. Phys. Lett. 41, 679.

    Article  CAS  Google Scholar 

  5. D’Andrea, A., Del Sole, R., (1990) Exciton quantization and polariton propagation in semiconductor slabs: From semi-infinite crystals to quantum wells, Phys. Rev. B41, 1423.

    Google Scholar 

  6. Greene, R.L., Bajaj, K.K., Phelps, D.E. (1984) Energy levels of Wannier excitons in GaAs-Ga1-xAlxAs quantum-well structures, Phys. Rev. B29, 1807.

    Google Scholar 

  7. Andreani, L.C., Pasquarello, A. (1990) Accurate theory of excitons in GaAs-Ga1-xAlxAs quantum wells, Phys. Rev. B42, 8928.

    Google Scholar 

  8. Tuffigo, H., Cox, R.T., Lentz, G., Magnea, N., Mariette, H. (1990) Optical properties of excitons in II-VI quantum wells: importance of center-of-mass quantization, Journal of Crystal Growth 101, 778.

    Article  CAS  Google Scholar 

  9. Knox, R.S. (1963) Theory of Excitons, Solid State Phys. Suppl. 5, Academic Press, New-York.

    Google Scholar 

  10. Shinada, M., Sugano, S. (1966) Interband Optical Transitions in Extremely Anisotropic Semiconductors, J. Phys. Soc. Jpn. 21, 1936.

    Article  CAS  Google Scholar 

  11. Bastard, G., Delalande, C., Guldner, Y., Voisin P., (1988) Optical characterization of II-V and II-VI semiconductor heterolayers in Advances in Electronics and Electron Physics, Academic Press, New-York.

    Google Scholar 

  12. Welch, D.F., Wicks, G.W., and Eastman, L.F. (1985) Luminescence line shape broadening in GaInAs/AlInAs quantum wells, Appl. Phys. Lett. 46, 991.

    Article  CAS  Google Scholar 

  13. Schultheiss, L., Honold, A., Kuhl, J., Kühler, K., Tu, C.W. (1986) Optical dephasing of homogeneously broadened two-dimensionel exciton transitions in GaAs quantum wells, Phys. Rev. B34, 9027.

    Google Scholar 

  14. Dexter, D.L. (1958) Solid State Physics, vol.6, Academic Press, New-york.

    Google Scholar 

  15. Andreani, L.C., Tassone, F., Bassani, F. (1991) Radiative lifetime of free excitons in quantum wells, Solid State Commun. 77, 641.

    Article  CAS  Google Scholar 

  16. Martinez-Pastor, J., Vinattieri, A., Carraresi, L., Colocci, M., Roussignol, Ph., Weimann G. (1993) Temperature dependence of exciton lifetimes in GaAs/AlxGal-xAs single quantum wells, Phys. Rev. B47, 10456.

    Google Scholar 

  17. Feldmann, J., Peter, G., Göbel, E.O., Dawson, P. Moore, K., Foxon, C., Elliot, R.J. (1987) Linewidth Dependence of Radiative Excitons in Quantum Wells, Phys. Rev. Lett. 59, 2337.

    Article  CAS  Google Scholar 

  18. Citrin, D.S. (1992) Long Intrinsic Radiative Lifetimes of excitons in Quantum Wires, Phys. Rev. Lett. 69, 3393.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Roussignol, P., Voos, M. (1995). Some Optical Properties of Semiconductor Quantum Well Heterostructures. In: Balkanski, M., Yanchev, I. (eds) Fabrication, Properties and Applications of Low-Dimensional Semiconductors. NATO ASI Series, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0089-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0089-2_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4043-3

  • Online ISBN: 978-94-011-0089-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics