Skip to main content

The Edge Experiment and the U.S. East Coast Magnetic Anomaly

  • Chapter
Rifted Ocean-Continent Boundaries

Part of the book series: NATO ASI Series ((ASIC,volume 463))

Abstract

The EDGE experiment offshore the U.S. east coast obtained near vertical incidence seismic reflection data, as well as wide angle seismic reflection and seismic refraction data. These results are combined with magnetic total intensity data in order to establish the origin for the East Coast Magnetic Anomaly (ECMA) and to hypothesize about geological events taking place at the time that opening was initiated in the North Atlantic.

Prominent seaward dipping reflectors (SDR’s) which reach a depth of almost 25 km represent layers of volcanics which give rise to the ECMA. Because these reflectors extend below the depth where the Curie temperature is reached, and because the volcanic layers lie directly over material believed to be derived from asthenospheric melt. it is believed that no continental crust lies below the seaward dipping reflectors (except at their feather edge). The seaward dipping reflectors alone are responsible for the ECMA. The crustal section here represents the Initial Oceanic Crust which is thicker and possesses higher seismic velocities than normal oceanic crust. It should not be called “transitional crust,” “modified continental crust,” or “rift stage crus!.” The 7.2 - 7.5 kmfsec layer is the lower part of the Initial Oceanic Crust rather than an underplating to a thinned continental crust. For the sub-horizontal volcanic layers (which give ri se to the SDR’s) to produce the ECMA it is necessary that they largely possess a single magnetic polarity . This can only take place if the subaerial sea floor spreading which produced these volcanic layers was initiated at a very high rate. As the spreading subsequently slows down, normal and reversely magnetized volcanic layers are presumably juxtaposed below each other, resulting in an effective cancellation of their magnetic effects and giving rise to a magnetic quiet zone. As the axis of sea floor spreading subsides to submarine depths the flow length of volcanic layers becomes small and typical sea floor spreading type magnetic anomalies can be produced. This model is also used to explain the coincidence of salt diapirs with the ECMA and also with the disappearance cf typically hyperbolic echoes from oceanic basement as the margin IS approached from the seaward side.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Alsop, L.E., and M. Talwani, The east coast magnetic anomaly, Science 226, 1189–1191, 1984.

    Article  Google Scholar 

  • Austin, J.A. Jr., P.L. Stoffa, J.D. Phillips, J. Oh, D.S. Sawyer, G.M. Purdy, E. Reiter, and J. Makris, Crustal structure of the Southeast Georgia embayment-Carolina Trough: Preliminary results of a composite seismic image of a continental suture (?) and a volcanic passive margin, Geology, 18, 1023–1027, 1990.

    Article  Google Scholar 

  • Behrendt, J.C., and K.D. Klitgord, High-sensitivity aeromagnetic survey of the U.S. Atlantic continental margin. Geophysics 45, 1813–1846, 1980.

    Article  Google Scholar 

  • Chowns, T.M., and C.T. Williams, Pre-Cretaceous rocks beneath the Georgia Coastal Plain - regional implications, in: G.S. Gohn, ed., pp.Ll-L42, Studies Related to the Charleston, South Carolina, Earthquake of 1886 - Tectonics and Seismicity, USGS Prof. Paper 1313, 1983.

    Google Scholar 

  • Dillon, W.P., P. Popenoe, J.A. Grow, K.D. Klitgord, B.A. Swift, C.K. Paull, and K.V. Cashman, Growth faulting and salt diapirism; Their relationship and control in the Carolina Trough, eastern North America, in Studies in Continental Margin Geology, Amer. Assoc. Pet. Geol., J.S. Watkins and C.L. Drake, eds, Memoir 34, 21–46, 1983.

    Google Scholar 

  • Drake, C.L., J. Heirtzler, and J. Hirshman, Magnetic anomalies off eastern North America, J. Geophys. Res., 68, 5259–5275, 1963.

    Google Scholar 

  • Ed Driver, personal communication, 1982.

    Google Scholar 

  • Eldholm, O., and K. Grue, North Atlantic Volcanic Margins: Dimensions and production rates, J. Geophys. Res., 99, 2955–2968, 1994.

    Article  Google Scholar 

  • Emery, K.O., E. Uchupi, J.D. Phillips, C.O. Bowin, E.T. Bunce, and S.T. Knott, Continental rise off eastern North America, Am. Assoc. Petrol. Geol. Bull., 54, 44–108, 1970.

    Google Scholar 

  • Ewing, J., and Ewing, M., Seismic-Refraction Measurements in the Atlantic Ocean Basins, in the Mediterranean Sea, on the Mid-Atlantic Ridge, and in the Norwegian Sea, Bull. Geol. Soc. Amer., 70, 291–318, 1959.

    Article  Google Scholar 

  • Fenwick, D.K.B., M.J. Keen, C.E. Keen, and A. Lambert, Geophysical studies of the continental margin northeast of Newfoundland, Canad. J. Earth Sci. 5, 483–500, 1968.

    Article  Google Scholar 

  • Glover III, L.G., R.E. Sheridan, W.S. Holbrook, J. Ewing, M. Talwani, R. Hawman, and S. Smithson, The “Taconic” suture problem - Piedmont to Offshore - North Carolina to Maine, GSA (in press).

    Google Scholar 

  • Grow, J.A., Deep structure and evolution of the Baltimore Canyon Trough in the vicinity of the C.O.S.T. no. B-3 well, in Geological Studies of the C.O.S.T. No. B-3 Well, United States Mid-Atlantic Continental-Slope Area, edited by P.A. Scholle, USGS Circ. 833, 117–125, 1980.

    Google Scholar 

  • Hagstrom, J.T., North American Jurassic APW; The current dilemma, EOS, 74, 65, 1993.

    Article  Google Scholar 

  • Heirtzler, J.R., and D.E. Hayes, Magnetic boundaries in the North Atlantic, Science, 157, 185–187, 1967.

    Article  Google Scholar 

  • Hinz, K., The seismic crustal structure of the Norwegian continental margin in the Voering Plateau, in the Norwegian deep sea, and on the eastern flank of the Jan Mayen Ridge between 66° and 68° N, 24th Int. Geol. Congr., Sec. 8, pp. 28–36, 1972.

    Google Scholar 

  • Hinz, K., A hypothesis on terrestrial catastrophes: Wedges of very thick oceanward-dipping layers beneath passive continental margins - their origin and paleoenvironmental significance, Geol. Jahrbuch, ser. E, 22, 3–28, 1981.

    Google Scholar 

  • Hinz, K., and A. Popovici, On a multichannel seismic reconnaissance survey of the Argentine Eastern Continental Margin by S.V. EXPLORA, Bericht ueber eine digitalseismische uebersichtsvermessung des Atlantischen Kontinentalpandes vor Argentinien mit S.V. EXPLORA, 22 Dezember 1987–15 Januar 1988, Bundesanstalt fuer Geowissenschaften und Rohstoffe, Hanover, Germany, 1988.

    Google Scholar 

  • Holbrook, W.S., and P.B. Keleman, Large Igneous province on the U.S. Atlantic margin and implications for magmatism during continental break up, Nature, 364, 433–436, 1993.

    Article  Google Scholar 

  • Holbrook, W.S., G.M. Purdy, J.A. Collins, R.E. Sheridan, D.L. Musser, L. Glover, M. Talwani, J.I. Ewing, R. Hawman, and S. Smithson, Deep velocity structure of rifted continental crust, U.S. Mid-Atlantic margin, from wide-angle reflection/refraction data: Geophysical Research Letters,19, 1699–1702.

    Google Scholar 

  • Holbrook, W.S., G.M. Purdy, R.E. Sheridan, L. Glover III, M. Talwani, J. Ewing, and D. Hutchinson, Seismic structure of the U.S. Mid-Atlantic Continental Margin, J. Geophys. Res., 99, 17871–17891, 1994.

    Article  Google Scholar 

  • Hutchinson, D.R., J.A. Grow, K.D. Klitgord, and B.A. Swift, Deep structure and evolution of the Carolina trough, in: J.S. Watkins and C.L. Drake, eds., pp. 129–152, Studies in Continental-Margin Geology, Am. Assoc. Petrol. Geol. Mem. 34, 1983.

    Google Scholar 

  • Hutchinson, D.R., K.D. Klitgord, and A.M. Trehu, Alternative Interpretation: “Integration of COCORP deep reflection and magnetic anomaly analysis in the southeastern United States: Implications for the origin of the Brunswick and East Coast magnetic anomalies,” Geol. Soc. Am. Bull. 102, 271–274, 1990.

    Article  Google Scholar 

  • Keen, M.J., Possible edge effect to explain magnetic anomalies off the eastern seaboard of the U.S., Nature 222, 72–74, 1969.

    Article  Google Scholar 

  • Keller, R. Jr., J.L. Meuschke, and L.R. Alldredge, Aeromagnetic surveys in the Aleutian, Marshall, and Bermuda Islands, Trans., Am. Geophys. Un. 35, 558–572, 1954.

    Google Scholar 

  • Klitgord, K.D., and J.C. Behrendt, Aeromagnetic-anomaly map of the United States Atlantic continental margin, USGS Misc. Field Studies Map MF-913, 1977.

    Google Scholar 

  • Klitgord, K.D., D.R. Hutchinson, and H. Schouten, U.S. Continental margin: structural and tectonic framework, in: The Geology of North America, vol 1–2: The Atlantic Continental Margin, U.S., The GeologicalSociety of America, 19–55, 1988.

    Google Scholar 

  • Koenig, M., and M. Talwani, A geophysical study of the southern continental margin of Australia: Great Australian Bight and western sections, Geol. Soc. Am. Bull. 88, 1000–1014, 1977.

    Article  Google Scholar 

  • Larsen.H.C., and S.Jakobsdottir, Distribution, crustal properties and significance of seawardsdipping sub-basement reflectors off E. Greenland, Geol. Soc. Spec. Publ. London, 39, 95–114, 1988.

    Google Scholar 

  • LASE Study Group, Deep structure of the US East Coast passive margin from large aperture seismic experiments (LASE), Mar. Petrol. Geol. 3, 234–242, 1986.

    Article  Google Scholar 

  • McBride, J.H., and K.D. Nelson, Integration of COCORP deep reflection and magnetic anomaly analysis in the southeastern United States: Implications for the origin of the Brunswick and East Coast magnetic anomalies: Geol. Soc. Am. Bull. 100, 436–445, 1988.

    Article  Google Scholar 

  • Nelson, K.D., J.H. McBride, J.A. Arnow, J.E. Oliver, L.D. Brown, and S. Kaufman, New COCORP profiling in the southeastern United States, Part II: Brunswick and East Coast magnetic anomalies, opening of the north-central Atlantic Ocean, Geology. 13, 718–721, 1985.

    Article  Google Scholar 

  • Oh, J., J.A. Austin Jr., J.D. Phillips, M.F.Coffin, and P.L. Stoffa, Presence of Seaward Dipping Reflectors on the Blake Plateau: Implications for Seafloor Spreading Events, Geology, 23, 9–12, 1995.

    Article  Google Scholar 

  • Oh, J., J.D. Phillips, J.A. Austin Jr., and P.L. Stoffa, Deep-penetration seismic reflection images across the United States continental margin, in Continental lithosphere: Deep seismic reflections, Geodynamics Series Volume 22, edited by R. Meissner, L. Brown, H.-J. Durbaum, W. Franke, K. Fuchs and F. Seifert, 225–240, American Geophysical Union, Washington, D.C., 1991.

    Chapter  Google Scholar 

  • O’Reilly, W., and S.K. Banerjee, The mechanism of oxidation in titanomagnetites: a magnetic study, Mineralog. Mag., 36, 29–37, 1967.

    Article  Google Scholar 

  • Parson, L.M., and the ODP Leg 104 Scientific Party, Dipping reflector styles in the N.E. Atlantic Ocean, in Eds: Morton, A.C., and Parsons, L.M., Early Tertiary opening of the N.E. Atlantic, Geol. Soc. Special Publication No. 39, 57–68, 1988.

    Google Scholar 

  • Rabinowitz, P.D., and J. LaBrccquc, The Mesozoic South Atlantic Ocean and evolution of its continental margin, J. Geophys. Res., 84, 5973–6002, 1979.

    Article  Google Scholar 

  • Rabinowitz, R.D., Heirtzler, J.R., and Cande, S.C., Magnetic anomaly profiles along ship tracks, in Eastern North American Continental Margin and Adjacent Ocean Floor 28° to 36°N and 70° to 82°W (Atlas 5), Editors G.M. Bryan and J.R. Heirtzler, and 34° to 41°N and 68° to 78°W (Atlas 4), Editors J.J. Ewing and R.D. Rabinowitz, in Ocean Margin Drilling Program, Regional Atlas Series, Marine Science International, Woods Hole, 1983.

    Google Scholar 

  • Sawyer, D.S., and D.L. Harry, A dynamic model of extension in the Baltimore Canyon trough, Tectonica, 11, 420–436, 1992.

    Article  Google Scholar 

  • Schoenharting, G., and N Abrahamsen, Paleomagnetism of the volcanic sequence in Hole 642E, ODP Leg 104, Voering Plateau, and correlation with Early Tertiary basalts in the North Atlantic: Proc. ODP, Sci Results, 104: College Station, TX (Ocean Drilling Program), 911–920, 1989.

    Google Scholar 

  • Schreckenberger, B., and H.A. Roeser, Seaward Dipping Reflector Sequences as Sources for High Amplitude Marine Magnetic Anomalies, EOS 75, 16, 131, 1994.

    Google Scholar 

  • Sheridan, R.E., D.L. Musser, L. Glover, III, M. Talwani, J.I. Ewing, W.S. Holbrook, G.M> Purdy, R. Hawman, and S. Smithson, Deep Seismic reflection data of EDGE U.S. mid-Atlantic continental margin experiment: Implications for Appalachian sutures and Mesozoic rifting and magmatic underplating, Geology. 21. 563–567, 1993.

    Article  Google Scholar 

  • Stacey, F.D., Physics of the Earth, 2nd ed., New York, Wiley, 414 p. 1977.

    Google Scholar 

  • Talwani, M., J.C. Mutter, and O. Eldholm, The initiation of opening of the Norwegian Sea, Oceanologia Acta, no. SP., 23–30, 1981.

    Google Scholar 

  • Talwani, M., J. Ewing, R.E. Sheridan, D.L. Musser, L. Glover III, S. Holbrook and M. Purdy, EDGE lines off the U.S. Mid-Atlantic margin and the East Coast Magnetic Anomaly, EOS, 73, 490, 1992.

    Google Scholar 

  • Taylor, P.T., I. Zietz, and L.S. Dennis, Geologic implications of aeromagnetic data for the eastern continental margin of the United States, Geophysics 33, 755–780, 1968.

    Article  Google Scholar 

  • Trehu, A.M., A. Ballard, L.M. Dorman, J.F. Gettrust, K.D. Klitgord. and A. Schreider, Structure of the lower crust beneath the Carolina trough, U.S. Atlantic continental margin, J. Geophys. Res. 94B, 10585–10600, 1989.

    Article  Google Scholar 

  • Uchupi, E., J.T. Crosby, S.T. Bolmer Jr., J. D. Eusden Jr., J.I Ewing, J.K. Costain, R.J. Cleason and L. Glover III, in Eastern North American Continental Margin and Adjacent Ocean Floor 28° to 36°N and 70° to 82°W (Atlas 5), Editors G.M. Bryan and J R. Heirtzler, and 34° to 41 °N and 68° to 78°W (Atlas 4), Editors J.J. Ewing and R.D. Rabinowitz, in Ocean Margin Drilling Program, Regional Atlas Series. Marine Science International, Woods Hole, 1983.

    Google Scholar 

  • White, R.S., G.K. Westbrook, S.R. Fowler, G.D. Spence, P.J. Barton, M. Jopen, J. Morgan, A. Bowen, C. Prescott, and M.H.P. Bott, Hatton Bank (northwest U.K.) continental margin structure, Geophys. J.R. Astron. Soc., 89, 265–272, 1987.

    Article  Google Scholar 

  • White, R., and D. McKenzie, Magmatism of Rift Zones: the generation of volcanic continental margins and flood basalts, J. Geophys. Res., 94, 7685–7229, 1989.

    Article  Google Scholar 

  • Zitellini, N., and J.L. LaBrecque, Stochastic approach to modeling the ocean continent transition, IUGG 7th Scientific Assembly, Buenos Aires, Argentine, IAGA Bulletin No. 55, PartC, p. 415.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Talwani, M., Ewing, J., Sheridan, R.E., Holbrook, W.S., Glover, L. (1995). The Edge Experiment and the U.S. East Coast Magnetic Anomaly. In: Banda, E., Torné, M., Talwani, M. (eds) Rifted Ocean-Continent Boundaries. NATO ASI Series, vol 463. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-0043-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-0043-4_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-4024-2

  • Online ISBN: 978-94-011-0043-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics