Skip to main content

Physical Hydrogen Storage on Nanotubes and Nanocarbon Materials

  • Chapter
Perspectives of Fullerene Nanotechnology

Abstract

The recent developments of carbonaceous material synthesis have resulted in several new forms of carbon such as carbon nanotubes and carbon nanofibers, and super-high surface area activated carbons nano-materials. There are speculations that these materials may have extraordinarily high hydrogen storage capacities. In this work, we examined the hydrogen gas adsorption capacities of these carbonaceous materials at room temperature, as well as at liquid nitrogen temperature, to elucidate the hydrogen storage potential of these materials. Experimental results indicated that none of these materials showed significant hydrogen storage capacities at room temperatures, and only super-high surface area activated carbon showed attractive gravimetric hydrogen storage at cryogenic temperature, of over 5.4% by weight at 77 K and at 300 psi hydrogen gas pressure. However, the nanocarbon materials produced from the activation of fullerene (AC-C60), and vacuum soot (AC-VAS) showed increased hydrogen adsorption capacity compared to the best commercial super-high surface area activated carbons. In addition, nanotubes showed enhanced storage capacity for their surface area. The challenge is to further modify nanotubes materials to achieve high surface area and consequently high hydrogen storage capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hydrogen Program Implementation Plan, FY1994 - FY1998’, Office of Energy Management, U.S. Department of Energy, October (1993).

    Google Scholar 

  2. J. Bentley (Arthur D. Little Inc.) `Hydrogen Storage for transportation Fuel Cells’, SAE TOPTEC Presentation, March (1993).

    Google Scholar 

  3. L. Schlapbach (ed.), `Hydrogen in Intermetallic Compounds I’, ( Springer-Verlag, New York, NY, 1988 ).

    Google Scholar 

  4. K. A. G. Amankwah, J. S. Noh and J. A. Schwarz, Int. Hydrogen Energy 14 (1989) 437.

    Article  CAS  Google Scholar 

  5. S. Iijima, `Helical microtubules of graphitic carbon’, Nature 354 (1991) 56.

    Article  CAS  Google Scholar 

  6. A. C. Dillon, K. M. Jones, T. A. Bekkedahl, C.H. Kiang, D. S. Bethune and M. J. Heben, `Storage of hydrogen in single-walled carbon nanotubes’, Nature 386 (1997) 377.

    Article  CAS  Google Scholar 

  7. Y. Ye, C. C. Ahn, C. Witham, B. Liu, A. G. Rinzler, D. Colbert, K. A. Smith and R. E. Smalley, `Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes’, Appl. Phys. Lett. 74 (1999) 2307.

    Google Scholar 

  8. C. Liu, Y. Y. Fan, M. Liu, H. T. Conga, H. M. Cheng and M. S. Dresselhaus, `Hydrogen in single-walled carbon nanotubes at room temperature’, Science 286 (1999) 1127.

    Google Scholar 

  9. N. M. Rodriguez, A. Chamber and R. T. K. Baker, `Catalytic Engineering of Carbon Nanostructures’, Langmuir 11 (10) (1995) 3862.

    Article  CAS  Google Scholar 

  10. A. Chambers, C. Park, R. T. K. Baker and N. M. Rodriguez, `Hydrogen storage in graphite nanofibers’, J. Phys. Chem. B 102 (1998) 4253.

    Article  CAS  Google Scholar 

  11. P. Chen, X. Wu, J. Lin and K. L. Tan, `High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures’, Science 285 (1999) 91.

    Article  CAS  Google Scholar 

  12. D. S. Bethune, C.-H. Kiang, M. S. de Vries, et al., `Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layer walls’, Nature 363 (1993) 605.

    Article  CAS  Google Scholar 

  13. R. O. Loutfy, T. P. Lowe, A. P. Moraysky and S. Katagiri, `Commercial Production of Fullerenes and Carbon Nanotubes’, this volume, 35–46.

    Google Scholar 

  14. R. O. Loutfy, E. Weksler and Weijiong Li, `Unique fullerene-based highly microporous carbons for gas storage’, this volume, 293–304.

    Google Scholar 

  15. X. Lu, F. Li and A. T. Watson, `Adsorption Measurements in Devonian Shales’, Fuel 74 (4) (1995) 599.

    Article  CAS  Google Scholar 

  16. M. S. Dresselhaus, K. A. Williams and P. A. C. Eklund, `Hydrogen Adsorption in Carbon Materials’, MRS Bull. 45 (1999) 45–50.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Loutfy, R.O., Moravsky, A., Franco, A., Veksler, E. (2002). Physical Hydrogen Storage on Nanotubes and Nanocarbon Materials. In: Ōsawa, E. (eds) Perspectives of Fullerene Nanotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-94-010-9598-3_30

Download citation

  • DOI: https://doi.org/10.1007/978-94-010-9598-3_30

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-9600-3

  • Online ISBN: 978-94-010-9598-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics